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Moléculaire, Institut National de la Santé et de la Recherche Médicale U413, Unité Affiliée au Centre National de la Recherche
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Abstract——Pituitary adenylate cyclase-activating
polypeptide (PACAP) is a 38-amino acid peptide that
was first isolated from ovine hypothalamic extracts on
the basis of its ability to stimulate cAMP formation in
anterior pituitary cells. PACAP belongs to the vasoac-
tive intestinal polypeptide (VIP)-glucagon-growth
hormone releasing factor-secretin superfamily. The
sequence of PACAP has been remarkably well con-
served during the evolution from protochordate to
mammals, suggesting that PACAP is involved in the
regulation of important biological functions. PACAP is
widely distributed in the brain and peripheral organs,
notably in the endocrine pancreas, gonads, and respi-
ratory and urogenital tracts. Characterization of the
PACAP precursor has revealed the existence of a
PACAP-related peptide whose activity remains un-
known. Two types of PACAP binding sites have been
characterized. Type I binding sites exhibit a high af-
finity for PACAP and a much lower affinity for VIP
whereas type II binding sites have similar affinity for

PACAP and VIP. Molecular cloning of PACAP recep-
tors has shown the existence of three distinct receptor
subtypes, the PACAP-specific PAC1 receptor, which is
coupled to several transduction systems, and the two
PACAP/VIP-indifferent VPAC1 and VPAC2 receptors,
which are primarily coupled to adenylyl cyclase. PAC1
receptors are particularly abundant in the brain and
pituitary and adrenal glands whereas VPAC receptors
are expressed mainly in the lung, liver, and testis. The
wide distribution of PACAP and PACAP receptors has
led to an explosion of studies aimed at determining the
pharmacological effects and biological functions of
the peptide. This report reviews the current knowl-
edge concerning the multiple actions of PACAP in the
central nervous system and in various peripheral or-
gans including the endocrine glands, the airways, and
the cardiovascular and immune systems, as well as the
different effects of PACAP on a number of tumor cell
types.

I. Introduction

The secretory activity of the adenohypophysis is reg-
ulated by aminergic (mainly dopaminergic) and pepti-
dergic hypothalamic neurons (Elde and Hökfelt, 1979;
Stumpf and Jennes, 1984; Ju et al., 1991). Five neu-
ropeptides have been isolated from ovine and porcine
hypothalamic extracts, or from a human pancreatic tu-
mor, and characterized by the groups of Roger Guille-
min, Andrew Schally, and Willy Vale, based on their

ability to either stimulate or inhibit the secretion of
anterior pituitary hormones: thyrotropin-releasing hor-
mone (TRH; Boler et al., 1969; Burgus et al., 1969),
gonadotropin-releasing hormone (GnRH; Amoss et al.,
1971; Matsuo et al., 1971), somatostatin (Brazeau et al.,
1973; Esch et al., 1980; Böhlen et al., 1981), corticotrop-
in-releasing factor (CRF; Vale et al., 1981), and growth
hormone-releasing factor (GRF; Guillemin et al., 1982;
Rivier et al., 1982b). All of these hypophysiotropic neu-
rohormones are synthesized in hypothalamic neurons,
whose axons project toward the median eminence, and
are transported to the anterior pituitary by the capillar-
ies of the portal system. Another common feature of
these hypothalamic neurohormones is that they are gen-
erally widely distributed in the central nervous system
(CNS) and in peripheral organs, and that they exert a
large array of biological activities in addition to their
hypophysiotropic actions. After the primary structure of
GRF had been determined in 1982, it was commonly
thought that all major hypophysiotropic neurohormones
had been identified. However, the subsequent character-
ization of other neuropeptides capable of regulating the
activity of anterior pituitary cells, such as pituitary ad-
enylate cyclase-activating polypeptide (PACAP; Miyata
et al., 1989) and prolactin (PRL)-releasing peptide (Hi-
numa et al., 1998), has shown that this view was incor-
rect.

PACAP has been originally isolated from an extract of
ovine hypothalamus on the basis of its ability to stimu-

2 Abbreviations: ACTH, adrenocorticotropic hormone; CHO, Chi-
nese hamster ovary; CNS, central nervous system; CREB, cAMP-
responsive element-binding protein; CRF, corticotropin-releasing
factor; EGL, external granule cell layer; E, embryonic day; ERK,
extracellular signal-regulated kinase; FS, folliculo-stellate; FSH, fol-
licle-stimulating hormone; GH, growth hormone; GnRH, gonado-
tropin-releasing hormone; GRF, growth hormone-releasing factor;
hCG, human chorionic gonadotropin; IGL, internal granule cell lay-
er; IL, interleukin; LH, luteinizing hormone; LI, like immunoreac-
tivity; a-MSH, a-melanocyte-stimulating hormone; MAP kinase, mi-
togen-activated protein kinase; NO, nitric oxide; NPY, neuropeptide
tyrosine; PACAP, pituitary adenylate cyclase-activating polypeptide;
PAC1-R, PACAP-specific receptor; PC, prohormone convertase; PHI,
peptide histidine-isoleucine; PHM, peptide histidine-methionine;
PKA, protein kinase A; PKC, protein kinase C; PLC, phospholipase
C; P, postnatal day; POMC, proopiomelanocortin; PRL, prolactin;
PRP, PACAP-related peptide; PVN, paraventricular nucleus; RIA,
radioimmunoassay; SON, supraoptic nucleus; TM, transmembrane
domain; TNF-a, tumor necrosis factor-a; TRH, thyrotropin-releasing
hormone; TSH, thyroid-stimulating hormone; VIP, vasoactive intes-
tinal polypeptide; VPAC1-R, VIP/PACAP receptor, subtype 1;
VPAC2-R, VIP/PACAP receptor, subtype 2; CHO, Chinese hamster
ovary.
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late cAMP formation in rat pituitary cells (Miyata et al.,
1989). Hypothalamic neurons containing PACAP project
toward the median eminence and terminate in the vi-
cinity of the capillary loops of the hypothalamo-pituitary
portal system. Like other hypophysiotropic neurohor-
mones, PACAP is contained in extra-hypothalamic neu-
rons as well as in numerous peripheral tissues. Consis-
tent with its widespread distribution, PACAP has been
found to exert pleiotropic effects including modulation of
neurotransmitter release, vasodilation, bronchodilation,
activation of intestinal motility, increase of insulin and
histamine secretion, as well as stimulation of cell mul-
tiplication and/or differentiation.

II. PACAP

A. Discovery of PACAP

To isolate novel hypophysiotropic neuropeptides, the
group of Arimura has screened fractions from an extract
of 4300 ovine hypothalamus by monitoring their stimu-
latory effect on adenylyl cyclase activity in cultured rat
anterior pituitary cells. Using this approach, they have
isolated in pure form a peptide, found to markedly in-
crease cAMP formation, that they termed pituitary ad-
enylate cyclase-activating polypeptide. Characterization
of the peptide revealed that it comprises 38 amino acid
residues and is C-terminally a-amidated (Miyata et al.,
1989). Two years later, the primary structure of this
38-amino acid form of PACAP (PACAP38) was deter-
mined in the European green frog Rana ridibunda, a
species that diverged from the line leading to mammals
some 280 million years ago (Chartrel et al., 1991; Hoyle,
1998). Frog PACAP38 appears to contain only one amino
acid substitution (Val35 3 Ile), which may be accom-
plished by the exchange of a single nucleotide in the
cDNA sequence (Chartrel et al., 1991). The sequence of
PACAP38 comprises an internal cleavage-amidation
site (Gly28-Lys29-Arg30), suggesting that the PACAP
precursor can generate a 27-residue a-amidated
polypeptide (PACAP27). Consistent with this hypothe-
sis, Miyata et al. (1990) have isolated from the ovine
hypothalamus another fraction capable of stimulating
adenylyl cyclase activity in adenohypophysial cells that,
on characterization, happened to correspond to the N-
terminal 27-amino acid sequence of PACAP38. Thus it
appears that the structure of the biologically active re-
gion of PACAP, corresponding to the PACAP27 se-
quence, has been totally preserved during evolution,
from amphibians to mammals. The sequence of
PACAP27 shows 68% identity with vasoactive intestinal
polypeptide (VIP), identifying PACAP as a member of
the VIP-glucagon-GRF-secretin superfamily of structur-
ally related peptides (Fig. 1; Campbell and Scanes, 1992;
Segre and Goldring, 1993).

B. Secondary Structure of PACAP

Conformational analysis of PACAP27 by two-dimen-
sional NMR and circular dichroism spectroscopy has
shown an initial disordered N-terminus sequence of
eight amino acid residues followed by a region, from
amino acid residues 9 to 24, that consists of four distinct
domains (Inooka et al., 1992). The first domain, encom-
passing residues 9 to 12, forms a b-turn-like conforma-
tion whereas the three others are composed of distinct
helical regions that extend from residues 12 to 14, 15 to
20, and 22 to 24, respectively. The conformation of
PACAP38 mirrors that of PACAP27 in its N-terminal
region whereas the C-terminal segment exhibits a short
helix attached by a flexible hinge to the 1–27 region
(Wray et al., 1993). The biological importance of the
three structural domains of PACAP38 has been investi-
gated using truncated PACAP analogs (see Section III,
D).

The three-dimensional structure of PACAP exhibits
substantial similarities with those of other members of
the VIP/glucagon family (Braun et al., 1983; Gronenborn
et al., 1987; Wray et al., 1993). In particular, both
PACAP27 and VIP possess two helices separated by a
disordered region, but the position of the first a-helix of
PACAP27 is shifted by two residues toward the C-ter-
minus, and the conformation of the second helix of
PACAP27 is closer to an a-helix than that of VIP. These
minor conformational differences between PACAP27
and VIP may contribute to the selectivity of the peptides
for their receptors (Inooka et al., 1992).

C. Structure of the PACAP Precursor and
Post-Translational Processing

The cDNA encoding the PACAP precursor has been
characterized in several vertebrate species (Ogi et al.,
1990; Ohkubo et al., 1992; Arimura and Shioda, 1995;
Okazaki et al., 1995) and in a protochordate, the ascid-
ian Chelyosoma productum (McRory and Sherwood,
1997). In humans, the cDNA encodes a 176-amino acid
prepro-protein, which comprises a 24-amino acid signal
peptide (Hosoya et al., 1992). In all mammalian species
studied so far, the sequence of PACAP38 is located in the
C-terminal domain of the precursor (Fig. 2). The cDNA
sequences of humans (Ohkubo et al., 1992), sheep

FIG. 1. Amino acid sequences of the different members of the PACAP-
VIP-GRF-glucagon superfamily in human. –, amino acids identical with
those of PACAP38. Adapted from Kieffer and Habener, 1999.
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(Kimura et al., 1990), rat (Ogi et al., 1990), and mouse
prepro-PACAP (Okazaki et al., 1995) have revealed the
existence of a 29-amino acid peptide delimited by basic
residues at its N- and C-terminal extremities, located
upstream of PACAP38 (Fig. 2). This peptide, which ex-
hibits moderate structural homology with PACAP27,
has been termed PACAP-related peptide (PRP) (Ogi et
al., 1990; Wray et al., 1995; Hoyle, 1998). In mammals,
the overall organization of the PACAP precursor exhib-
its strong similarities with that of the VIP precursor
(Fig. 2). In particular, the VIP precursor encompasses a
VIP-related peptide, called peptide histidine-methionine
(PHM) amide in humans (Itoh et al., 1983; Bodner et al.,
1985; Christophe et al., 1989) or peptide histidine-isole-
ucine (PHI) amide in sheep (Bounjoua et al., 1991), rat
(Nishizawa et al., 1985), mouse (Lamperti et al., 1991),
and chicken (McFarlin et al., 1995), which possesses
moderate amino acid identity with VIP. The degree of
similarity between PACAP27 and PRP (22%) or VIP and
PHI (37%) is less than that between PACAP and VIP
(68%) or PRP and PHI (44%), respectively. Thus it is
assumed that intragenomic duplication of a VIP/PACAP
ancestor sequence has occurred before duplication of the
whole ancestor gene (Ohkubo et al., 1992). A proposed
model describing the evolutionary process leading to the
generation of distinct precursors for PACAP, VIP, glu-
cagon, GRF, and secretin in mammals is presented in
Fig. 3. In submammalian vertebrates and the tunicate
Chelyosoma productum, the PACAP precursor com-
prises both GRF and PACAP (Fig. 3) (Parker et al., 1993;

McRory et al., 1995, 1997; McRory and Sherwood, 1997;
Alexandre et al., 2000) (See section II, I).

In mammals, the primary structure of the PACAP
precursor reveals the existence of seven mono- or dibasic
residues that can be cleaved by various prohormone
convertases (PCs) including PC1, PC2, PC4, PC5, PC7,
furine, and PACE4 (Seidah et al., 1994, 1998). In the rat,
cleavage at three dibasic sites, i.e., Arg79-Arg80, Lys129-
Arg130, and Arg170-Arg171, generates a large intermedi-
ate precursor of PRP (big PRP) and a glycine-extended
form of PACAP38 (Fig. 4). Cleavage at the single Arg110,

FIG. 2. Schematic representation of the human PRP/PACAP and PHM/VIP precursors. The general organization of the two precursors is presented
and the sequences of PRP and PHM as well as PACAP and VIP have been aligned. The conserved amino acids are indicated in black and the percentage
of amino acid identity between PRP and PHM as well as PACAP27 and VIP are indicated. SP, signal peptide.

FIG. 3. Hypothetical schemes depicting the evolutionary history of the
PACAP/VIP/glucagon/GRF/secretin gene family. Adapted from Ohkubo
et al., 1992.
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followed by hydrolysis of this C-terminal Arg residue by
carboxypeptidases E, H, or M, generates PRP (Rouillé et
al., 1995). The Gly169 residue is used by peptidyl glycine
a-amidating monooxygenase (Eipper et al., 1992a,b) for
the amidation of the Lys168 residue at the C-terminal
extremity of PACAP38. Finally, the tripeptide Gly158-
Lys159-Arg160 can be cleaved to generate the a-amidated
PACAP27 isoform (Fig. 4). Processing of the PACAP
precursor has been studied in Chinese hamster ovary
(CHO)-K1 cells transfected with the human PACAP
cDNA (Okazaki et al., 1992). Characterization of the
various peptides secreted in the incubation medium by
HPLC combined with radioimmunoassay (RIA) detec-
tion has confirmed that processing of the PACAP pre-
cursor actually yields to the formation of PACAP38,
PACAP27, and PRP (Okazaki et al., 1992).

In the rat hypothalamus, PC1 and/or PC2 are inten-
sively expressed in nuclei enriched with PACAP-immu-
noreactive neurons, supporting the hypothesis that
these two endopeptidases could be involved in the pro-
cessing of the PACAP precursor (Köves et al., 1994a;
Zheng et al., 1994; Dong et al., 1997). Cotransfection
experiments in GH4C1 cells have confirmed that both

PC1 and PC2 can actually process the rat PACAP pre-
cursor to generate mature PACAP38 and PACAP27 (Li
et al., 1999). In the testis, where PACAP is particularly
abundant, PC4 can process the PACAP precursor to
generate both PACAP38 and PACAP27 (Li et al., 1998).

D. The PACAP Gene

The gene encoding PACAP has been cloned in humans
(Hosoya et al., 1992) and mouse (Yamamoto et al., 1998).
The overall architecture of the two genes is similar, with
the exception of the 59-untranslated region of the mouse
gene, which encompasses two exons as a result of alter-
native splicing of the transcription initiation domain.
The human PACAP gene is composed of five exons, the
sequence of PRP being encoded by exon 4 and that of
PACAP by exon 5 (Fig. 5). Northern blot analysis has
revealed the presence of a 3-kb PACAP mRNA in the rat
hypothalamus (Hosoya et al., 1993; Hannibal et al.,
1995a). A shorter transcript with a truncated 59-un-
translated region has been characterized in the rat testis
(Hurley et al., 1995). Similarly, shorter PACAP mRNA
has been found in the mouse, bovine, and human testis
(Hurley et al., 1995). It has also been reported that

FIG. 4. Schematic representation of the post-translational processing of the rat PACAP precursor. The nature and allocation of each cleavage and
amidation site is specified. PAM, peptidyl glycine a-amidating monooxygenase. SP, signal peptide.
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another short PACAP transcript is produced in sympa-
thetic neurons (Harakall et al., 1998).

The promoter sequence of the PACAP gene (about 400
bp) comprises two regions, termed P1 and P2 (Fig. 5),
which correspond, respectively, to an initiator-like se-
quence and a CT-rich domain with GC boxes (Jankowski
and Dixon, 1987; Ohkubo et al., 1994). Surprisingly, the
promoter region of the human PACAP gene does not
contain any apparent TATA or CAAT box, which are
normally required for accurate initiation of transcription
(Hampsey, 1998). In contrast, the PACAP promoter pos-
sesses two cAMP-response-like elements, a 12-O-tetra-
decanoylphorbol 13-acetate response element and a pair
of sequences homologous to the consensus sequence for
pituitary-specific factor growth hormone factor 1-bind-
ing sites, which are known to play a role in the tissue-
specific expression of growth hormone (GH) (Bodner et
al., 1988; Dolle et al., 1990; Castrillo et al., 1991). Inves-
tigation of the promoter activity has revealed that
PACAP is constitutively expressed and that transcrip-
tion of the PACAP gene can be enhanced by cAMP,
12-O-tetradecanoylphorbol 13-acetate, and even by
PACAP itself (Suzuki et al., 1994a; Hashimoto et al.,
2000).

The structural organization of the PACAP gene is
similar to that of the VIP gene (Lamperti et al., 1991)
and GRF gene (Mayo et al., 1985), confirming that all
three genes originate from a common ancestral sequence
through gene duplication (Fig. 3). In humans, the
PACAP gene has been localized by Southern blotting
and in situ hybridization to the P11 region of chromo-
some 18. This region is associated with holoprosen-
cephaly, the most common hereditary developmental de-
fect of the forebrain in humans, suggesting that PACAP
might be involved in the control of brain development
(Hosoya et al., 1992; Chang et al., 1993; Golden, 1998).

E. Distribution of PACAP in the CNS

Soon after the characterization of PACAP, the distri-
bution of the peptide was determined in the brain of
mammals (Arimura et al., 1991; Köves et al., 1991; Vigh
et al., 1991; Kivipelto et al., 1992; Ghatei et al., 1993)
and amphibians (Yon et al., 1992). The distribution of
PACAP-immunoreactive cells and fibers in the rat brain
was schematically presented in a previous review
(Gonzalez et al., 1998). In rat, RIA measurements have
revealed that the highest concentrations of PACAP oc-
cur in the hypothalamic area (Arimura et al., 1991;
Ghatei et al., 1993). Reversed-phase HPLC analysis
showed that PACAP38 is by far the predominant form,
PACAP27 representing less than 10% of the total pep-
tide content in brain tissue (Arimura et al., 1991; Ghatei
et al., 1993; Masuo et al., 1993; Hannibal et al., 1995a;
Piggins et al., 1996).

The mapping of PACAP-expressing neurons has been
investigated by in situ hybridization and immunocyto-
chemistry (Table 1). In the rat hypothalamus, PACAP-
immunoreactive neurons are primarily located in the
parvo- and magnocellular neurons of paraventricular
and supraoptic nuclei (Köves et al., 1991, 1994b; Kivi-
pelto et al., 1992; Ando et al., 1994; Kimura et al., 1994;
Hannibal et al., 1995a,b; Piggins et al., 1996). PACAP
mRNA is expressed in the paraventricular and arcuate
nuclei (Hannibal et al., 1995b; Murase et al., 1995). A
dense accumulation of PACAP-immunoreactive fibers is
found in the internal zone of the median eminence and
in the vicinity of the capillaries of the hypothalamo-
hypophysial portal system (Köves et al., 1990, 1991;
Kivipelto et al., 1992; Tamada et al., 1994; Hannibal et
al., 1995a,b; Mikkelsen et al., 1995). Quantification of
PACAP by RIA has shown that the concentration of the
peptide in the rat portal blood is significantly higher

FIG. 5. Organization of the human PACAP gene and PACAP mRNA. The five exons are boxed and numbered. The untranslated regions of exons
1 and 5 are denoted by dashed lines. Exon domains encoding PRP and PACAP are hatched. Arrows indicate the locations of binding sites for potential
transcriptional factors. CRE, cAMP response element; Inr-like, initiator-like element; P1, promotor region 1; P2, promotor region 2; TRE, 12-O-
tetradecanoylphorbol 13-acetate response element. GHF-1, growth hormone factor 1.
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than in the peripheral blood, indicating that PACAP
released by hypothalamic nerve terminals is actually
transported to the pituitary (Dow et al., 1994). Regional
distribution studies revealed that significant amounts of
PACAP38 are also found in extrahypothalamic regions,
including the substantia nigra, nucleus accumbens, sep-
tum, globus pallidus, cerebral piriform cortex, and pons
(Ghatei et al., 1993; Masuo et al., 1993). In the limbic
system, PACAP-like immunoreactive fibers are detected
in the amygdaloid complex and in the mediodorsal and
paraventricular nuclei of the thalamus (Köves et al.,
1991; Masuo et al., 1993; Takahashi et al., 1994; Palko-
vits et al., 1995). In the lateral septum area, a dense
network of immunoreactive fibers innervates blood ves-
sels (Köves et al., 1991). In situ hybridization has re-
vealed the presence of scattered PACAP-expressing cell
bodies in the cingulate and frontal cortex (Mikkelsen et
al., 1994). PACAP and its mRNA also have been de-
tected in the cerebellum (Ghatei et al., 1993; Mikkelsen
et al., 1994; Takahashi et al., 1994; Hannibal et al.,
1995a; Nielsen et al., 1998a). Specifically, PACAP-like
immunoreactivity (PACAP-LI) is localized in the soma
and dendrites of Purkinje cells, whose axons directly
contact granule cells (Nielsen et al., 1998a). In the me-
dulla oblongata, the majority of perikarya exhibiting
PACAP-LI are found in the commissural and medial
subnuclei of the solitary nucleus, the dorsal motor vagal
nucleus, the nucleus ambiguous, the ventrolateral me-
dulla, the ventral medullary surface, and the caudal
raphe nuclei, supporting the hypothesis that PACAP
may act as a regulator of visceral functions (Legradi et
al., 1994). In the spinal cord, PACAP mRNA is expressed
in a subpopulation of sensory neurons of the dorsal root
ganglia (Mulder et al., 1994), and numerous PACAP-
immunoreactive fibers are found in the superficial layer
of the dorsal horns (Moller et al., 1993; Dun et al.,
1996a).

The location of PACAP-containing neurons also has
been investigated in the CNS of nonmammalian verte-
brates, including birds (Peeters et al., 1998), amphibians
(Yon et al., 1992, 1993b), and fishes (Matsuda et al.,
1997a,b; Montéro et al., 1998). Globally, the distribution
of PACAP-immunoreactive cells exhibits a high degree
of similarity with that of mammals. In particular, in the
brain of the frog Rana ridibunda, prominent groups of
PACAP-containing neurons are located in the hypothal-
amus, i.e., in the anterior preoptic area, the ventral
magnocellular preoptic nucleus, the suprachiasmatic
nucleus, the ventral hypothalamic nucleus, and the pos-
terior tubercle (Yon et al., 1992). Similarly, in the prim-
itive teleost fish Anguilla anguilla, PACAP-containing
neurons are primarily located in the parvo- and magno-
cellular subdivisions of the preoptic nucleus (Montéro et
al., 1998).

The distributions of PACAP and VIP in the CNS are
substantially different (Masuo et al., 1993). For in-
stance, in the thalamus a few VIP fibers were found

running up the wall of the third ventricle whereas a
dense network of PACAP fibers was observed in the
central thalamic nuclei (Köves et al., 1991). In the bed
nucleus of stria terminalis, PACAP fibers appear to sur-
round unstained, round-shaped neuronal cell bodies,
whereas the VIP fibers are homogeneously distributed.
PACAP-immunoreactive fibers are also found in the lat-
eral septum of the hypothalamus where only a few VIP
fibers are observed (Köves et al., 1991). In the magno-
cellular neurons, PACAP but not VIP is colocalized with
oxytocin (Köves et al., 1994b). In the brainstem, VIP-LI
is present in the mesencephalic periaqueductal gray and
the dorsal and linear raphe nuclei whereas PACAP-LI is
abundant in the paraventricular nucleus (PVN) and the
dorsal vagal complex. The bed nucleus of the stria ter-
minalis contains a very high concentration of PACAP
and VIP-LI but no double-labeled cells have been de-
tected (Kozicz et al., 1997). In contrast, both PACAP and
VIP-immunoreactive fibers appear to innervate the wall
of cerebral blood vessels (Jansen-Olesen et al., 1994).

F. Distribution of PACAP in Peripheral Organs

In peripheral tissues, as in the brain, PACAP38 is by
far the major molecular form but the proportions of
PACAP27 and PACAP38 vary between the different or-
gans (Arimura et al., 1991). For instance, in the colon,
PACAP27 represents 30% of the total immunoreactivity
whereas, in the testis, PACAP27 is hardly detectable
(Arimura et al., 1991). The occurrence of different pro-
portions of the two peptides in various tissues can be
likely ascribed to the existence of different sets of PC
enzymes.

The presence of PACAP mRNA and PACAP has been
detected in most endocrine glands (Table 2). In particu-
lar, PACAP is found in the different lobes of the pitu-
itary gland (Arimura and Shioda, 1995; Rawlings and
Hezareh, 1996; Arimura, 1998). In the anterior pitu-
itary, PACAP is observed in a subpopulation of gonado-
trope cells (Mikkelsen et al., 1995; Köves et al., 1998). In
the ventral part of the neural lobe, PACAP is contained
in nerve fibers with large terminal boutons (Mikkelsen
et al., 1995). At the ultrastructural level, PACAP-LI
appears to be located in dense core granules contained in
neurosecretory fibers (Kimura et al., 1994). PACAP-im-
munoreactive elements are also found in the gonads
(Shioda et al., 1994), adrenal (Arimura et al., 1991),
parathyroid (Luts and Sundler, 1994), and endocrine
pancreas (Table 2; Arimura and Shioda, 1995; Love and
Szebeni, 1999). In rat, the highest amounts of PACAP
are found in the testis. In fact, the concentration of
PACAP in the testis is higher than in the whole brain
and exceeds the concentration of any other known pep-
tides (Arimura et al., 1991). In situ hybridization studies
have shown that PACAP mRNA is present in germ cells
and not in Sertoli or Leydig cells (Shioda et al., 1994).
Electron microscopic studies have revealed that PACAP
is located in acrosoma caps and granules of primary
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öv

es
et

al
.,

19
94

a
E

n
th

or
in

al
co

rt
ex

1
1

K
öv
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öv
es

et
al

.,
19

94
a;

P
ig

gi
n

s
et

al
.,

19
96

;
S

ko
gl

ös
a

et
al

.,
19

99
c

C
A

3
1

2
/1

1
1

K
öv
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rä
s

et
al

.,
19

96
;

S
h

io
da

et
al

.,
19

96
;

K
oh

et
al

.,
20

00
P

la
ce

n
ta

1
1

S
ca

ld
af

er
ri

et
al

.,
20

00
U

ri
n

ar
y

tr
ac

t
E

pi
th

el
iu

m
2

1
1

F
ah

re
n

kr
u

g
an

d
H

an
n

ib
al

,
19

98
S

m
oo

th
m

u
sc

u
la

tu
re

1
1

R
ad

zi
sz

ew
sk

i
et

al
.,

19
96

;
F

ah
re

n
kr

u
g

an
d

H
an

n
ib

al
,

19
98

U
ri

n
ar

y
bl

ad
de

r
1

1
M

ol
le

r
et

al
.,

19
93

;
F

ah
re

n
kr

u
g

an
d

H
an

n
ib

al
,

19
98

U
re

th
ra

1
Is

h
iz

u
ka

et
al

.,
19

95
;

R
ad

zi
sz

ew
sk

i
et

al
.,

19
96

R
es

pi
ra

to
ry

tr
ac

t
L

ar
yn

x
1

1
M

ol
le

r
et

al
.,

19
93

L
u

n
g

1
1

U
dd

m
an

et
al

.,
19

91
b;

M
ol

le
r

et
al

.,
19

93
N

os
e

1
1

M
ol

le
r

et
al

.,
19

93
T

on
gu

e
1

1
M

ol
le

r
et

al
.,

19
93

T
ra

ch
eo

-b
ro

n
ch

ia
l

w
al

l
1

1
U

dd
m

an
et

al
.,

19
91

b;
M

ol
le

r
et

al
.,

19
93

D
ig

es
ti

ve
sy

st
em

E
xo

cr
in

e
pa

n
cr

ea
s

1
1

F
ri

do
lf

et
al

.,
19

92
;

H
an

n
ib

al
an

d
F

ah
re

n
kr

u
g,

20
00

M
ye

n
te

ri
c

ga
n

gl
ia

1
/2

1
1

S
u

n
dl

er
et

al
.,

19
92

;
M

ol
le

r
et

al
.,

19
93

;
H

an
n

ib
al

et
al

.,
19

98
;

N
ag

ah
am

a
et

al
.,

19
98

S
al

iv
ar

y
gl

an
d

2
2

H
au

se
r-

K
ro

n
be

rg
er

et
al

.,
19

92
S

m
oo

th
m

u
sc

le
1

1
1

1
/1

1
U

dd
m

an
et

al
.,

19
91

a;
S

u
n

dl
er

et
al

.,
19

92
;

K
öv
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spermatocytes but the peptide has not been observed in
mature spermatids (McArdle, 1994; Shioda et al., 1994;
Hannibal and Fahrenkrug, 1995). In the ovary, the con-
centration of PACAP is much lower than in the testis,
and the peptide appears to be contained in nerve fibers
(Steenstrup et al., 1995). Intense expression of PACAP
mRNA has also been observed in the granulosa cells of
preovulatory follicles (Ko et al., 1999). The adrenal gland
contains a high concentration of PACAP (Arimura et al.,
1991; Watanabe et al., 1992; Ghatei et al., 1993). In
mammals, PACAP is found in the adrenal medulla
(Shiotani et al., 1995), where it is contained both in
chromaffin cells (Holgert et al., 1996) and in fibers (Frö-
din et al., 1995; Moller and Sundler, 1996). In contrast,
in the frog adrenal gland, PACAP-LI is restricted to
nerve fibers that contact either chromaffin cells or ste-
roid-producing cells (Yon et al., 1993a). Similarly, in
mammals, the parathyroid gland and the intrapancre-
atic ganglia are innervated by PACAP-containing fibers
(Luts and Sundler, 1994; Filipsson et al., 1998a; Love
and Szebeni, 1999).

Large amounts of PACAP-LI are found in all parts of
the gastrointestinal tract (Arimura et al., 1991; Hauser-
Kronberger et al., 1992; Ghatei et al., 1993; Mao et al.,
1998; Vincze et al., 1999). The presence of PACAP-im-
munoreactive cell bodies has been observed in the my-
enteric ganglia throughout the gastrointestinal tract,
and the existence of intrinsic neurons has been con-
firmed by in situ hybridization (Shen et al., 1992; Han-
nibal et al., 1998). Numerous PACAP-containing nerve
fibers have been visualized along the circular muscle
fibers and in the longitudinal smooth muscle layer of the
esophagus (Uddman et al., 1991a; Köves et al., 1993;
Olsson and Holmgren, 1994). PACAP-LI has also been
detected in various exocrine glands of the alimentary
canal, e.g., the parotid and submandibular glands, the
liver, and the exocrine pancreas (Arimura et al., 1991;
Fridolf et al., 1992; Moller et al., 1993; Luts and Sundler,
1994). In the urinary bladder, networks of PACAP-im-
munoreactive fibers are found in the vicinity of blood
vessels (Moller et al., 1993; Fahrenkrug and Hannibal,
1998). In the airways, PACAP-immunoreactive fibers
innervate smooth muscle bundles and blood vessels in
the trachea as well as small bronchioles in the lung
(Cardell et al., 1991; Uddman et al., 1991b; Hauser-
Kronberger et al., 1996; Shigyo et al., 1998). In the
immune system, PACAP is expressed in various lym-
phoid tissues including the thymus, spleen, and duode-
nal mucosa (Gaytan et al., 1994), and in peritoneal mac-
rophages (Pozo et al., 1997). The occurrence of PACAP
mRNA has been demonstrated in the superior cervical
ganglion (Nogi et al., 1997b). Depolarization of these
neurons stimulates the release of PACAP27 and
PACAP38 and causes a concomitant increase of PACAP
mRNA and peptide (Brandenburg et al., 1997). A few
PACAP-positive perikarya are also present in the sphe-
nopalatine and otic ganglia (Uddman et al., 1991b,

1999). In the eye, PACAP-LI is present in fibers inner-
vating the iris sphincter and in cell bodies scattered in
the ciliary ganglia (Wang et al., 1995; Elsas et al., 1997;
Olianas et al., 1997; Samuelsson-Almen and Nilsson,
1999) and in fibers of the ganglion cell layer of the retina
(Hannibal et al., 1997; Seki et al., 1997).

In peripheral organs, in contrast to the CNS, PACAP
and VIP often appear to be coexpressed by the same
cells. For instance, colocalization of PACAP and VIP has
been demonstrated in nerve fibers and cell bodies in the
human and sheep esophageal sphincter (Uddman et al.,
1991a; Ny et al., 1995), in the human and chicken gut
(Sundler et al., 1992), and in the ovine respiratory tract
(Uddman et al., 1991b). Nerve fibers containing both
PACAP and VIP are also found in other tissues, notably
in the parathyroid glands of cat and sheep (Luts and
Sundler, 1994), and in the gill arch of the goldfish Car-
assius auratus (De Girolamo et al., 1998).

G. PACAP in Tumor Cells

The PACAP gene is differentially expressed in brain
tumors. PACAP mRNA is present in most gliomas but is
detected in only one-fifth of meningiomas (Vertongen et
al., 1995a). PACAP mRNA and PACAP-LI are abundant
in human neuroblastomas (Suzuki et al., 1993; Taka-
hashi et al., 1993a; Vertongen et al., 1997a; Waschek et
al., 1997). Double-staining experiments have demon-
strated that PACAP and VIP are colocalized and intensely
expressed in most pancreatic carcinoma, neuroblastoma,
and pheochromocytoma tumors (Fahrenkrug et al., 1995).
VIP has been reported to exert an autocrine stimulation of
neuroblastoma cell growth and differentiation. The pres-
ence of PACAP suggests that it could also control neuro-
blastoma cell tumor proliferation (O’Dorisio et al., 1992;
Pence and Shorter, 1992). Most pituitary tumors contain
large amounts of PACAP. Because pituitary cells are pro-
grammed to proliferate in response to cAMP (Lin et al.,
1992), it is conceivable that in pituitary adenomas, PACAP
contributes to tumorigenesis (Spada et al., 1996). Overex-
pression of PACAP has also been reported in ovarian tu-
mors (Odum and Fahrenkrug, 1998) and in pheochromo-
cytomas (Takahashi et al., 1993b).

H. Ontogenesis of PACAP

The evolution of the content of PACAP during devel-
opment has been studied in detail in the CNS of rodents
(Shuto et al., 1996; Waschek et al., 1998; Skoglösa et al.,
1999b,c). In the mouse embryo, PACAP mRNA is
present in the brain as early as embryonic day 9.5 (E9.5)
(Shuto et al., 1996; Waschek et al., 1998), and the mRNA
level increases during the prenatal period to reach a
maximum at birth. In situ hybridization histochemistry
revealed that the PACAP gene is widely expressed in the
neural tube of the mouse at E10.5 (Shuto et al., 1996;
Waschek et al., 1998). PACAP mRNA is found in differ-
entiating neurons, suggesting that PACAP may control
proliferation or differentiation of neuroblasts during
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neural tube development. PACAP is readily measurable
by RIA in the rat brain at E14 (Masuo et al., 1994;
Tatsuno et al., 1994). Immunoreactive nerve fibers are
observed in the spinal cord and ganglia at E16 (Nielsen
et al., 1998b). In the septum and hypothalamus, the
content of PACAP increases gradually from birth to
postnatal day 60 (P60). In the cortex, hippocampus, thal-
amus, and midbrain, PACAP levels increase more rap-
idly from P10 to P20 and reach a plateau at P30 (Masuo
et al., 1994). In the striatum and cerebellum, the content
of PACAP is very high at birth and during the first
postnatal weeks and then decreases gradually from P20
to adulthood. In the developing rat cerebellum, PACAP
is expressed in Purkinje cells (Nielsen et al., 1998a;
Skoglösa et al., 1999b), which are known to regulate the
survival of granule cells.

The ontogenesis of PACAP has also been described in
the brain of the frog Rana ridibunda (M. Mathieu,
L.Yon, I. Charifou, M. Trabucchi, M. Vallarino, C.
Pinelli, R.K. Rastogi and H.Vaudry, submitted).
PACAP-immunoreactive neurons are found soon after
hatching (stages IV-VII of development; Taylor and Koll-
ros, 1946) in the dorsal thalamus, and appear later
(stages VII-IX) in the dorsal and ventral infundibular
nuclei of the hypothalamus. PACAP-immunoreactive fi-
bers are seen in the median eminence during the
premetamorphic period (stages XIII-XVIII), suggesting
that PACAP could be involved in the activation of the
pituitary-thyroid axis, which is required for the onset of
metamorphosis (Tata, 1998). Reversed-phase HPLC
analysis combined with RIA detection indicates that
PACAP38 is, by far, the predominant molecular form
present in the frog brain at all developmental stages (M.
Mathieu, L.Yon, I. Charifou, M. Trabucchi, M. Vallarino,
C. Pinelli, R.K. Rastogi and H.Vaudry, submitted).

I. Phylogenetic Evolution of PACAP

The primary structure of PACAP has been totally
conserved among those mammalian species yet studied,
i.e., human (Ohkubo et al., 1992), sheep (Miyata et al.,
1989), rat (Ogi et al., 1990), and mouse (Okazaki et al.,
1995). The sequence of PACAP has now been deter-
mined in several representative species of nonmamma-
lian vertebrates, including the chicken Galus domesticus
(McRory et al., 1997), the frog Rana ridibunda (Chartrel
et al., 1991), the salmon Oncorhynchus nerka (Parker et
al., 1993), the catfish Clarias macrocephalus (McRory et
al., 1995), and the tunicate Chelyosoma productum
(McRory and Sherwood, 1997) (Fig. 6). A partial se-
quence of PACAP that is identical with the first 28
amino acids of mammalian PACAP38 has also been
characterized in the lizard Gila monster salivary gland
(Pohl and Wank, 1998), and the presence of PACAP-LI
has been documented in the brain and ovary of the
crested newt, Triturus carnifex (Gobbetti et al., 1997).
The primary structure of the 1–27 region of PACAP,
which is responsible for the biological activity of the
peptide, has been fully conserved in lizard, frog, salmon,
and catfish, whereas the PACAP27 sequences of the
chicken and stargazer exhibit only one amino acid sub-
stitution (Fig. 6). In contrast, the C-terminal portion of
PACAP, which is not required for the biological activity
of the peptide, is more variable (Fig. 6). Globally, the
sequence of PACAP has been better preserved than that
of VIP (Chartrel et al., 1995) and far more conserved
than that of GRF across vertebrates (M. Montéro, L.Yon,
D. Kikuyama, S. Dufour and H.Vaudry, submitted). The
fact that evolutionary pressure has acted to strongly
preserve the bioactive sequence of PACAP indicates that
the peptide must exert important physiological func-
tions. In support of this notion, a PACAP-like peptide

FIG. 6. Comparison of the amino acid sequences of PACAP from various vertebrate species and a protochordate. Percentages indicate amino acid
identity between PACAP38 from different nonmammalian vertebrates and mammalian PACAP38, and between lizard or tunicate PACAP27 and
mammalian PACAP27. –, amino acids identical with those of human PACAP. The potential cleavage-amidation sites are underlined.
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has been identified in the insect Drosophila melano-
gaster (Feany and Quinn, 1995), and this peptide has
been found to modulate ionic conductances at the neu-
romuscular junction (Zhong, 1995; Zhong and Pena,
1995).

Two different genes for PACAP are present in the
tunicate Chelyosoma productum (Fig. 6; McRory and
Sherwood, 1997). Each of these genes encodes both
PACAP and a GRF-like peptide (Fig. 3). Nucleotide se-
quence similarities suggest that the two tunicate
PACAP genes arose from exon duplication followed by
gene duplication. In salmon, a cDNA that encodes both
PACAP and a GRF-like peptide has been characterized
(Parker et al., 1993). A cDNA encoding both PACAP and
GRF-like peptide has also been cloned in the catfish
Clarias macrocephalus (McRory et al., 1995), frog Rana
ridibunda (Alexandre et al., 2000), and chicken Gallus
domesticus (McRory et al., 1997). In salmon, catfish, and
chicken, alternative splicing of the primary transcript
generates a shorter precursor that contains only PACAP
(Parker et al., 1993; McRory et al., 1995, 1997). In con-
trast to all submammalian species investigated so far, in
mammals, GRF and PACAP precursors are encoded by
two distinct genes (Mayo et al., 1985; Hosoya et al.,
1992). Based on primary sequence homologies among
existing peptides of the GRF superfamily (Fig. 1), it is
possible to construct a hypothetical evolution tree of

these genes (Campbell and Scanes, 1992). The organiza-
tion of the mammalian prepro-GRF and prepro-PACAP
cDNAs suggests that the two genes arose from duplica-
tion of an ancestral gene with subsequent exon loss (Fig.
3; Parker et al., 1997). Within the PACAP-VIP-glucagon-
GRF-secretin gene superfamily, the PACAP gene ap-
pears to be closely related to the VIP one (Ogi et al.,
1990). Furthermore, by comparison of the peptide se-
quences and geological record, one can predict the
changes that have occurred during the evolution of the
VIP-glucagon-GRF-secretin superfamily. According to
these chronological analyses, duplication of a common
ancestral gene yielding to the PRP/PACAP and PHI/
VIP genes may have occurred some 750 million years
ago (Campbell and Scanes, 1992).

III. The PACAP Receptors

A. Pharmacological Characterization of PACAP
Receptors

Two classes of PACAP binding sites have been char-
acterized on the basis of their relative affinities for
PACAP and VIP (Table 3). Type I binding sites, which
have been originally characterized in the anterior pitu-
itary and hypothalamus using 125I-PACAP27 as a radio-
ligand, exhibit high affinity for PACAP38 and PACAP27
(Kd ' 0.5 nM) and much lower affinity for VIP (Kd . 500

TABLE 3
Pharmacological characteristics and transduction mechanisms associated with PACAP receptors

Type of Binding
Sites Binding Affinity Receptor

Subtypes Splice Variants
Transduction Mechanisms

Adenylyl Cyclase PLC Calcium

Kd

Type I
S Stimulates IP

turnover
Hop1
Hop2

Stimulates cAMP
production

Hip-Hop P38 . P27 .. VIP Stimulates calcium mobilization

P38 ' P27 ' 0.5 nM
PAC1

P38 ' P27 .. VIP
VIP . 500 nM

Hip 2

Stimulates IP
turnover
P38 ' P27 .. VIP

Vs

TM4 2 2 L-type channel

Type II Stimulates cAMP
production

P38 ' 27 ' VIP VPAC1

?

1? Stimulates calcium mobilization
' 1 nM . secretin

P38 . P27 . VIP

Stimulates cAMP
turnover

helodermin . P38 '
P27 ' VIP ' 1 nM

VPAC2 2 Stimulates calcium mobilization

P38 ' P27 ' VIP
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nM) (Cauvin et al., 1990; Gottschall et al., 1990, 1991;
Lam et al., 1990; Suda et al., 1992). Type II binding
sites, which are abundant in various peripheral organs
including the lung, duodenum, and thymus, possess sim-
ilar affinity for PACAP and VIP (Kd ' 1 nM) (Gottschall
et al., 1990; Lam et al., 1990). Subtle differences in the
ability of PACAP38 and PACAP27 to displace 125I-
PACAP27 from its recognition sites in the CNS suggest
the existence of two subsets of type I binding sites (Cau-
vin et al., 1991; Robberecht et al., 1991b). Similarly, type
II binding sites have been subdivided into two classes,
depending on their affinity for secretin (Hubel, 1972)
and helodermin (Christophe et al., 1986): classical VIP
binding sites exhibit low affinity for secretin (Christophe
et al., 1981, 1989; Robberecht et al., 1982, 1988) whereas
helodermin-preferring binding sites possess higher af-
finity for helodermin than for VIP or PACAP, and no
affinity for secretin (Robberecht et al., 1984, 1998; Gour-
let et al., 1991a; Shima et al., 1996; Solano et al., 1996).
Careful characterization of 125I-PACAP27 binding on
membrane preparations indicated that the expression of
type I and type II binding sites is not cell-specific and
that most of the tissues possess various proportions of
each receptor subtype (Tatsuno et al., 1990; Nguyen et
al., 1993).

B. Biochemical Characterization of PACAP Receptors

Type I PACAP binding sites were first isolated from a
tumoral cell line derived from the rat exocrine pancreas
(Buscail et al., 1990). Cross-linking of 125I-PACAP27 to
cell membrane preparations made it possible to isolate a
65-kDa protein (Buscail et al., 1990). In the porcine
brain, type I PACAP binding sites exhibit an apparent
molecular mass of 60 kDa (Schäfer and Schmidt, 1993;
Schäfer et al., 1994). The extent of N-glycosylation of
type I PACAP binding sites appears to be rather low
compared with other glycosylated receptors (Klueppel-
berg et al., 1989; Feldman et al., 1990), but it is similar
to those of type II PACAP or glucagon receptors (Iwanij
and Hur, 1985; Raymond and Rosenzweig, 1991). In the
bovine brain, type I PACAP binding sites have a molec-
ular mass of 57 kDa and are coupled to a Gs protein
(Ohtaki et al., 1990, 1993). Type I PACAP binding sites
purified from bovine brain membranes were used to
sequence the N-terminal portion of the protein (Ohtaki
et al., 1993). The amino acid sequence was subsequently
used to clone the type I PACAP receptor (see Section III,
C).

Type II PACAP binding sites have been isolated in
pure form from bovine brain membranes (Ohtaki et al.,
1990). The protein has an apparent molecular mass of 45
kDa, i.e., very similar to that previously reported for the
VIP receptor (Couvineau et al., 1986a,b).

C. Cloning of PACAP Receptors

Three PACAP receptors have been cloned so far and
termed PAC1, VPAC1, and VPAC2 receptors (Table 3)

by the International Union of Pharmacology according
to their relative affinity for PACAP and VIP (Harmar et
al., 1998).

The PACAP-specific receptor (PAC1-R) cDNA se-
quence was first determined from a pancreatic acinar
carcinoma cell line (Pisegna and Wank, 1993). This
PAC1-R cDNA, which encodes a 495-amino acid protein
with seven putative membrane-spanning domains, ex-
hibits a high degree of sequence identity with the glu-
cagon, secretin, and calcitonin receptor cDNAs. The
PAC1-R has subsequently been cloned in humans (Ogi et
al., 1993; Pisegna and Wank, 1996), bovine (Miyamoto et
al., 1994), rat (Hashimoto et al., 1993; Hosoya et al.,
1993; Morrow et al., 1993; Spengler et al., 1993; Svoboda
et al., 1993), and mouse (Hashimoto et al., 1996b). The
PAC1-R has also been cloned in the goldfish Carassius
auratus (Wong et al., 1998), and the frogs Rana ridi-
bunda (Alexandre et al., 1999) and Xenopus laevis (Hu et
al., 2000). Five variants resulting from alternative splic-
ing in the third intracellular loop region have been iden-
tified in rat (Spengler et al., 1993). The splice variants
are characterized by the absence (short variant) or pres-
ence of either one or two cassettes of 28 (hip or hop1
variant) or 27 (hop2 variant) amino acids (Journot et al.,
1994). The presence of the hip cassette impairs adenylyl
cyclase stimulation and abolishes phospholipase C
(PLC) activation, suggesting that the various cassettes
are involved in second messenger coupling (Table 3). In
the brain and pituitary, the short variant is the most
abundant form, whereas the hop variant predominates
in the testes and adrenal gland (Spengler et al., 1993). A
very short splice variant of PAC1-R, characterized by a
21-amino acid deletion in the N-terminal extracellular
domain, has also been characterized (Pantaloni et al.,
1996; Dautzenberg et al., 1999). The existence of this
21-amino acid sequence influences the receptor selectiv-
ity for the PACAP38 and PACAP27 isoforms and deter-
mines the relative potencies of the two peptides in stim-
ulating PLC. Another PACAP receptor variant termed
PAC1-R transmembrane domain (TM) 4 has been cloned
in the rat cerebellum (Chatterjee et al., 1996). This
latter receptor differs from the short variant of the
PAC1-R by discrete sequence substitutions located in
TMs II and IV. Surprisingly, activation of PAC1-R TM4
has no effect on adenylyl cyclase or PLC activity, but
causes calcium influx through L-type voltage-sensitive
calcium channels (Table 3). The mouse PAC1-R gene
spans more than 50 kb and is divided into 18 exons (Aino
et al., 1995). The proximal promoter region has no ap-
parent TATA box but contains a CCAAT box and two
potential specific protein 1-binding sites that act as tran-
scriptional activators (Dynan and Tjian, 1983; Skak and
Michelsen, 1999). The rat PAC1-R gene has been local-
ized on chromosome 4 (Cai et al., 1995) and spans 40 kb
with 15 exons (Chatterjee et al., 1997). The intron/exon
organization of the PAC1-R gene is very similar to that
of the other members of the secretin receptor family.
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Alternative splicing of the PAC1-R gene also occurs in
the untranslated region and could represent a regula-
tory mechanism involved in tissue-selective expression
of the gene and/or in mRNA stability. The human
PAC1-R gene is located in region p15 of chromosome 7
(Brabet et al., 1996).

The VIP/PACAP receptor, subtype 1 (VPAC1-R) was
first cloned from a rat lung cDNA library by cross-hy-
bridization with a secretin receptor cDNA. The rat
VPAC1-R cDNA encodes a 459-amino acid protein (Ishi-
hara et al., 1992) and exhibits 50% amino acid sequence
identity with the rat PAC1-R (Pisegna and Wank, 1993).
The human VPAC1-R cDNA was characterized from a
HT29 human colonic adenocarcinoma cell line library.
The human VPAC1-R comprises 457 amino acids and
possesses 84% sequence identity with the rat VPAC1-R
(Sreedharan et al., 1993). The VPAC1-R gene spans 22
kb and is composed of 13 exons ranging in size from 42
to 1400 base pairs (Sreedharan et al., 1995; Pei, 1997).
The promoter region encompasses several potential
binding sites for nuclear factors, including specific pro-
tein 1, activator protein-2, or autotumorolytic fraction.
The human VPAC1-R gene is located on region p22 of
chromosome 3 (Sreedharan et al., 1995). Selective sub-
stitution of amino acids His1783 Arg and Thr3433 Lys,
Pro, or Ala by directed mutagenesis results in constitu-
tive activation of the VPAC1-R with respect to cAMP
production (Gaudin et al., 1998, 1999). The VPAC1-R
also has been cloned in the goldfish Carassius auratus
(Chow et al., 1997) and the frog Rana ridibunda (Alex-
andre et al., 1999). The fact that the frog VPAC1-R
exhibits pharmacological characteristics of both VPAC1
and VPAC2 receptors in mammals should help to deci-
pher the structure-activity relationships of the VIP/
PACAP receptor family.

The VIP/PACAP-receptor, subtype 2 (VPAC2-R) was
cloned initially from a rat pituitary cDNA library (Lutz
et al., 1993) and subsequently from a human placenta
cDNA library (Adamou et al., 1995). The rat and human
VPAC2-R proteins exhibit 87% amino acid identity
(Gagnon et al., 1994; Svoboda et al., 1994; Adamou et al.,
1995). Northern blot analysis indicates that two
VPAC2-R mRNAs of 4.6 and 2.3 kb are expressed in the
human skeletal muscle, heart, brain, placenta, and pan-
creas (Adamou et al., 1995). The VPAC2-R gene is lo-
cated in region q36.3 of chromosome 7 in humans
(Mackay et al., 1996), and on chromosome 4 in rats (Cai
et al., 1995). The human VPAC2-R is encoded by 13
exons, and the human gene spans 117 kb (Lutz et al.,
1999b).

D. Structure-Activity Relationships

A number of PACAP analogs have been synthesized to
identify the determinants responsible for the recognition
and activation of the receptors (Fig. 7). As previously
reported for other members of the glucagon-GRF-secre-
tin family, the N-terminal region of PACAP appears to

play a crucial role for the biological activity of the pep-
tide. In particular, it has been shown that the deletion of
the His1 residue causes a 50-fold decrease in the affinity
of PACAP27 for rat and human PAC1-R (Gourlet et al.,
1991b; Bitar and Coy, 1993). Deletion of the His1 residue
of frog PACAP38 abolishes its adenylyl cyclase-stimu-
lating activity on adenohypophysial fragments (Yon et
al., 1993b). Suppression of the His1 and Ser2 residues
reduces by 3000-fold the potency of PACAP27 to stimu-
late adenylyl cyclase in AR4–2J rat pancreatic acinar
cells (Robberecht et al., 1992a). Replacement of the Ser2

residue by Ala has little effect whereas substitution of
Ser2 by Phe or Arg decreases by 1000-fold the ability of
PACAP27 analogs to stimulate adenylyl cyclase (Hou et
al., 1994). Substitution of the Asp3 residue by Asn mark-
edly reduces the stimulatory effect of PACAP27 on ad-
enylyl cyclase (Hou et al., 1994). N-terminal truncated
analogs of PACAP exhibit antagonistic activity of
PAC1-R, indicating that the N-terminal domain is re-
quired for receptor activation but is not essential for the
recognition of the binding site. Gradual deletion of the
N-terminal amino acid residues of PACAP27 and
PACAP38 has shown that amino acid 6 to 38 of PACAP
[PACAP(6–38)] is the most potent antagonist (Robbere-
cht et al., 1992b). Paradoxically, shorter analogs such as
PACAP(14–38) retain some adenylyl cyclase-stimulat-
ing potency (Vandermeers et al., 1992). Although both
PACAP27 and PACAP38 are potent agonists on PACAP/
VIP receptors, the C-terminal domain appears to play a
facilitatory role in the recognition of the binding sites.
For instance, N-terminal truncated or substituted ana-
logs derived from PACAP38 exhibit higher activity than
their PACAP27 counterparts (Fig. 7; Vandermeers et al.,
1992). The fact that a chimeric peptide formed by adding
the PACAP(28–38) sequence to the VIP moiety exhibits
a 100-fold higher affinity than VIP for PAC1-R (Gourlet
et al., 1996a, 1997b) provides additional evidence that
the C-terminal region of PACAP38 reinforces the bind-
ing efficacy of the peptide. Concurrently, the 28–38 ex-
tension may also be involved in the recognition of
PACAP by specific binding proteins. In support of this
notion, it has been found that one such potential binding
protein, ceruloplasmin, can bind PACAP38 but not
PACAP27 (Tams et al., 1999).

A natural peptide called maxadilan has been charac-
terized as a selective agonist of PAC1-R (Moro and Le-
rner, 1997). Maxadilan is a 61-amino acid peptide that
was isolated from the salivary gland of the blood-feeding
sand fly Lutzomia lingipalpis on the basis of its vasodi-
latory activity (Lerner et al., 1991). As maxadilan does
not possess any significant sequence identity with
PACAP, this is a unique example of functional conver-
gence between two peptides that do not share structural
similarity. A shortened maxadilan synthetic analog,
termed M65, in which the amino acid sequence 25 to 41
has been deleted, acts as a specific antagonist of PAC1-R
(Uchida et al., 1998; Moro et al., 1999).
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Most type II receptor antagonists designed so far are
N-terminal truncated or substituted VIP peptides (Pan-
dol et al., 1986; Turner et al., 1986; Gozes et al., 1995;
Gourlet et al., 1997a). Cyclic lactam analogs of PACAP
behave as potent type II receptor antagonists (Bitar et
al., 1994). A cyclic peptide, RO 25–1553, acts as a selec-
tive VPAC2-R agonist with respect to binding affinity
and adenylyl cyclase-stimulating potency (O’Donnell et
al., 1994; Gourlet et al., 1997c). Amino acid substitutions
and addition of a fatty acyl moiety have led to the de-
velopment of lipophilic VIP derivatives that exhibit en-
hanced potency and specificity for VPAC-R (Gozes and
Fridkin, 1992; Gozes et al., 1995; Gourlet et al., 1998).

These data suggest that several domains are involved in
the binding of PACAP to its receptors, and demonstrate
the possibility of developing powerful and selective ago-
nists or antagonists with potential therapeutic value.

The CHO and NIH 3T3 cell lines, and the yeast Sac-
charomyces cerevisiae, which are naturally devoid of
PACAP receptors, have been widely used for the phar-
macological and functional characterization of each
PACAP receptor subtype after transfection (Ciccarelli et
al., 1994; Delporte et al., 1995; Gaudin et al., 1996;
Gourlet et al., 1996b; Van Rampelbergh et al., 1996;
Hansen et al., 1999). Concurrently, the CHO and COS-7
cell lines have been used to investigate the binding prop-

FIG. 7. Structure-activity relationships of various PACAP38-related peptides. The binding affinity of a series of truncated PACAP analogs and
their potency to stimulate adenylyl cyclase are indicated. Amino acid substitutions are indicated in black. a, Gourlet et al., 1991b; b, Robberecht et
al., 1991b; c, Schäfer et al., 1991; d, Robberecht et al., 1992a; e, Robberecht et al., 1992b; f, Vandermeers et al., 1992; g, Ciccarrelli et al., 1994; h, Hou
et al., 1994; i, Ciccarelli et al., 1995; j, Van Rampelbergh et al., 1996.
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erties of chimeric PACAP/VIP receptors (Vilardaga et
al., 1995, 1996; Van Rampelbergh et al., 1996; Hashi-
moto et al., 1997; Juarranz et al., 1999b; Lutz et al.,
1999a).

E. Distribution of PACAP Receptors in the CNS

The localization of PACAP binding sites and PACAP
receptor mRNAs has been investigated thoroughly in
the rat brain (Masuo et al., 1991, 1992; Schäfer et al.,
1991; Hashimoto et al., 1996a; Nomura et al., 1996;
Shioda et al., 1997a; Vertongen et al., 1997b; M. Basille,
D. Vaudry, Y. Coulouarn, S. Jégou, I. Lihrmann, A.
Fournier, H. Vaudry and B. J. Gonzalez, submitted). The
distribution and relative density of type I (PACAP-spe-
cific) and type II (PACAP/VIP) binding sites are com-
pared in Table 4.

High concentrations of type I binding sites occur in
various hypothalamic structures including the supraop-
tic nucleus (SON), the periventricular nucleus, and the
lateral hypothalamic area. High densities of type I bind-
ing sites are also found in the piriform cortex, the diag-
onal band of Broca, the habenular nucleus, the septal
nucleus, the hippocampal formation, the superficial gray
layer of the superior colliculus, the dorsal raphe nucleus,
and the locus ceruleus (Cauvin et al., 1991; Masuo et al.,
1991, 1992; Suda et al., 1991; Hou et al., 1994). Lower
concentrations of recognition sites are present in the
internal granular layer of the olfactory bulb, the ento-
rhinal cortex, the ventral posterolateral nucleus of the
thalamus, the arcuate nucleus of the hypothalamus
(Cauvin et al., 1991; Masuo et al., 1992; Li et al., 1997),
the pineal gland (Simonneaux et al., 1998), and the
granule cell layer of the cerebellum (Basille et al., 1993,
1994).

Type II binding sites are generally less abundant, and
their distribution is more restricted than that of type I
sites (Table 4). In the rat CNS, type II binding sites are
mainly located in the olfactory bulb, the cerebral cortex,
the dentate gyrus, the thalamus, and the pineal gland
(Besson et al., 1984, 1986; Martin et al., 1987; Vertongen
et al., 1998). In contrast, the concentration of type II
binding sites is much lower than that of type I sites in
many other brain regions such as the medial nucleus of
the amygdaloid complex, the frontal cortex, the lateral
hypothalamic nucleus, and the cerebellum (Masuo et al.,
1992; Basille et al., 1993). Iodinated secretin and RO
25–1553 have been used to discriminate the respective
localization of the two subclasses of type II binding sites.
High concentrations of secretin-preferring sites are
present in the cerebral cortex, the amygdaloid nucleus,
the dentate gyrus, various thalamic nuclei, and the SON
whereas RO 25–1553-preferring sites are located in the
cerebral cortex, the lateral septal nucleus, the amygda-
loid complex, the thalamus, the medial mammillary,
periventricular, and suprachiasmatic nuclei of the hypo-
thalamus, and the superior colliculus (Vertongen et al.,
1997b). The occurrence of type I and type II binding sites

on cultured astrocytes (Tatsuno et al., 1990) suggests
that PACAP and/or VIP receptors are not only present
on neurons but can also be expressed in glial cells (Mar-
tin et al., 1992).

The distribution and relative density of PAC1-R,
VPAC1-R, and VPAC2-R mRNAs are compared in Table
5. Globally, the density of PAC1-R transcript is much
higher than those of the VPAC1-R and VPAC2-R tran-
scripts (Basille et al., 2000). The expression of PAC1-R
mRNA is particularly intense in the olfactory bulb, the
dentate gyrus of the hippocampus, the supraoptic nuclei
of the hypothalamus, the cerebellar cortex, and the area
postrema (Fig. 8; Hashimoto et al., 1996a; Nomura et al.,
1996; Shioda et al., 1997a; Otto et al., 1999). High levels
of PAC1-R mRNA are also observed in the cingulate,
entorhinal and piriform cortex, pyramidal and nonpyra-
midal cells of the hippocampal formation, the amygda-
loid nuclei, the centromedial, mediodorsal, and ventro-
medial nuclei of the thalamus, the hypothalamus, the
central gray, the raphe nuclei, and the superior collicu-
lus (Hashimoto et al., 1996a; Shioda et al., 1997a). In the
brain, the localization of PAC1-R transcripts correlates
well with the distribution of type I binding sites (Fig. 9;
Basille et al., 1993; Shioda et al., 1997a). The major
splice variants of PAC1-R in the rat brain is the short
isoform that does not contain any hip or hop cassettes
(Spengler et al., 1993; Zhou et al., 2000). The PAC1-R
gene is expressed both in neurons and in glial cells
(Tatsuno et al., 1991a). In neurons, PAC1-R-LI is located
mainly on cell bodies and dendrites (Shioda et al.,
1997a). At the ultrastructural level, accumulation of
PAC1-R-immunoreactive material is observed on the
plasma membrane, notably at synaptic formations
(Shioda et al., 1997a). Moderate levels of PAC1-R have
been detected by in situ hybridization in Bergmann glial
cells in the rat cerebellar cortex (Ashur-Fabian et al.,
1997). Characterization of PACAP receptor mRNA indi-
cates that cultured glial cells express the hop2 splice
variant of PAC1-R (Hashimoto et al., 1996a; Grimaldi
and Cavallaro, 1999).

The VPAC1-R mRNA is expressed mainly in the cere-
bral cortex and the hippocampus (Usdin et al., 1994;
Sheward et al., 1995). Anatomical mapping of the
VPAC2-R mRNA demonstrates a completely different
and, apparently, complementary distribution from that
of the VPAC1-R mRNA (Ishihara et al., 1992; Usdin et
al., 1994). Notably, a high density of VPAC2-R mRNA is
present in the thalamus, the suprachiasmatic nucleus,
the central nucleus of the amygdala, and the pontine
nucleus (Usdin et al., 1994; Sheward et al., 1995)
whereas very few VPAC1-R mRNA is found in these
structures. The distribution of the VPAC2-R overlaps
with that of the VPAC1-R only in the hippocampus (Us-
din et al., 1994). In the olfactory bulb, VPAC1-R, and
VPAC2-R, mRNAs are differentially distributed, i.e.,
VPAC1-R mRNA is present in the external plexiform
layer whereas VPAC2-R mRNA is expressed in the in-
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TABLE 4
Localization and relative abundance of type I and type II PACAP binding sites in the rat brain

Structures Type I Type II References

Telencephalon
Olfactory bulb 111 11 Martin et al., 1987; Cauvin et al., 1991

Glomerular layer 1 Martin et al., 1987
Internal granular layer 11 2/11 Martin et al., 1987; Masuo et al., 1992

Cerebral cortex 11 11 Ogawa et al., 1985; Staun-Olsen et al., 1985; Martin et al., 1987; Cauvin et al., 1991;
Suda et al., 1991; Vertongen et al., 1997

Astrocytes 1 11 Tatsuno et al., 1990
Cingulate cortex 111 1 Masuo et al., 1992
Entorhinal cortex 11 2/11 Martin et al., 1987; Masuo et al., 1992
Frontal cortex 111 2 Masuo et al., 1992
Parietal cortex 111 2 Masuo et al., 1992
Piriform cortex 111 2 Masuo et al., 1992

Septum
Lateral septal nucleus 111 1/11 Martin et al., 1987; Vertongen et al., 1997b
Medial septal nucleus 111 1 Masuo et al., 1992
Olfactory tubercule 111 1/11 Martin et al., 1987; Masuo et al., 1992

Basal ganglia 111 2/1 Suda et al., 1991; Masuo et al., 1992
Accumbens nucleus 1 Martin et al., 1987; Vertongen et al., 1997b

Amygdaloid complex 111 Vertongen et al., 1997b
Basal lateral nucleus 1 De Souza et al., 1985; Martin et al., 1987
Central nucleus 111 2/1 Besson et al., 1986; Martin et al., 1987; Masuo et al., 1992
Medial nucleus 111 2 Martin et al., 1987; Masuo et al., 1992

Hippocampal formation 111 1 Ogawa et al., 1985; Cauvin et al., 1991; Hou et al., 1994
CA1-3, pyramidal cells 111 2/1 Martin et al., 1987; Masuo et al., 1991; Vertongen et al., 1997b
CA1-3, non-pyramidal cells 1 Vertongen et al., 1997b
Dentate gyrus 111 2/111 Besson et al., 1984, 1986; De Souza et al., 1985; Martin et al., 1987; Masuo et al.,

1991; Vertongen et al., 1997b
Diagonal band of Broca 111 1 Masuo et al., 1992

Diencephalon
Epithalamus

Lateral habenular nucleus 111 2/11 Martin et al., 1987; Masuo et al., 1991; Vertongen et al., 1997b
Medial habenular nucleus 111 2/11 Martin et al., 1987; Masuo et al., 1991; Vertongen et al., 1997b
Pineal gland 11 11 Martin et al., 1987; Vertongen et al., 1997b; Simonneaux et al., 1998

Thalamus 11 Vertongen et al., 1997b
Centromedial nucleus 2 Martin et al., 1987
Mediodorsal nucleus 111 1/11 Besson et al., 1986; Masuo et al., 1992
Paraventricular nucleus 111 1 Martin et al., 1987; Nomura et al., 1996
Reuniens nucleus 111 1 Martin et al., 1987; Masuo et al., 1992
Rhomboid nucleus 111 1 Martin et al., 1987; Masuo et al., 1992
Ventral posterolateral nucleus 11 1 Masuo et al., 1992
Ventromedial nucleus 111 1 Martin et al., 1987; Masuo et al., 1992

Hypothalamus 111 Gottschall et al., 1990, 1991; Cauvin et al., 1991; Suda et al., 1991
Arcuate nucleus 11 2/11 Martin et al., 1987; Masuo et al., 1992
Dorsomedial nucleus 1/11 Besson et al., 1984, 1986; Martin et al., 1987; Vertongen et al., 1997b
Lateral hypothalamic area 111 2 Masuo et al., 1992
Medial mammillary nucleus 111 1/11 Martin et al., 1987; Masuo et al., 1992; Vertongen et al., 1997b
Paraventricular nucleus 2/1 De Souza et al., 1985; Vertongen et al., 1997b
Preoptic nucleus 1 Martin et al., 1987
Supraoptic nucleus 111 2/11 De Souza et al., 1985; Martin et al., 1987; Masuo et al., 1992; Vertongen et al., 1997b
Ventromedial nucleus 2/11 Martin et al., 1987; Masuo et al., 1992; Vertongen et al., 1997b

Mesencephalon
Central gray 111 2 Martin et al., 1987; Masuo et al., 1992
Dorsal tegmental nucleus 1 Martin et al., 1987
Raphe nuclei 2 Martin et al., 1987
Substantia nigra 11/

111
2/1 Martin et al., 1987; Masuo et al., 1992

Superior colliculus 111 1/11 Martin et al., 1987; Masuo et al., 1991
Metencephalon

Cerebellum 11 2 Ogawa et al., 1985; Martin et al., 1987; Cauvin et al., 1991; Suda et al., 1991
Internal granule cell layer 11 2 Basille et al., 1994
Medulla 2 2 Basille et al., 1994
Molecular layer 2 2 Basille et al., 1994

Pons 11 Cauvin et al., 1991
Locus coeruleus 111 1/111 Martin et al., 1987; Masuo et al., 1992
Pontine nuclei 111 2 Masuo et al., 1992
Raphe nuclei 111 1 Masuo et al., 1992

Myelencephalon
Area postrema 111 Martin et al., 1987

Spinal cord 11 11 Cauvin et al., 1991; Yashpal et al., 1991; Kar and Quirion, 1995

The symbols provide a semi-quantitative evaluation of the density of PACAP binding sites. 111, high density; 11, moderate density; 1, low density; 2, no binding sites.
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ternal granular layer (Usdin et al., 1994). In the cerebral
cortex, VPAC1-R mRNA is abundant in layers III and V,
whereas VPAC2-R mRNA is localized exclusively in
layer VI. Both VPAC1-R and VPAC2-R mRNA have
been characterized by reverse transcription-polymerase
chain reaction on glial cells (Grimaldi and Cavallaro,
1999).

In the murine superior cervical ganglion, intense ex-
pression of PAC1-R mRNA is observed in all neurons but
neither VPAC1-R nor VPAC2-R mRNAs are present
(Moller et al., 1997a,b; Nogi et al., 1997b; Braas and
May, 1999; DiCicco-Bloom et al., 2000). In the retina,
type I PACAP binding sites predominate whereas, in the
choroid, both type I and type II PACAP binding sites are
expressed (Nilsson et al., 1994; D’Agata and Cavallaro,
1998). Immunocytochemical and in situ hybridization
studies have revealed that PAC1-R is actively expressed
in ganglion and amacrine cells as well as in the inner
plexiform layer of the retina (Seki et al., 1997).

F. Distribution of PACAP Receptors in Peripheral
Organs

PACAP binding sites and/or receptor mRNAs have
been identified in most endocrine glands (Tables 6 and
7). Type I PACAP binding sites have been characterized
on rat and frog anterior pituitary membranes
(Gottschall et al., 1990; Lam et al., 1990; Jeandel et al.,
1999). Cytochemical labeling using biotinylated PACAP
revealed that all cell types of the adenohypophysis pos-
sess PACAP recognition sites (Vigh et al., 1993; Rawl-
ings and Hezareh, 1996). Reverse transcription-poly-
merase chain reaction amplification on single pituitary
cells indicated that gonadotrophs express the short and
hop splice variant isoforms (Bresson-Bépoldin et al.,
1998). The VPAC2-R mRNA is widely distributed in the
anterior pituitary whereas the VPAC1-R mRNA is not
expressed (Usdin et al., 1994). In the posterior pituitary,
both the neural lobe (Hashimoto et al., 1996a) and the
intermediate lobe (René et al., 1996) contain moderate
concentrations of PAC1-R mRNA. In the pancreas, insu-
lin-producing cells have been shown to express both
PAC1-R and VPAC2-R mRNAs (Usdin et al., 1994; Wei
and Mojsov, 1996a,b; Filipsson et al., 1998a; Torii et al.,
1998) whereas the VPAC1-R mRNA is found only in the
walls of blood vessels (Usdin et al., 1994). In the rat
adrenal gland, type I PACAP binding sites have been
characterized in medullary chromaffin cells by cytoau-
toradiography (Shivers et al., 1991) and immunocyto-
chemistry (Moller and Sundler, 1996). In situ hybridiza-
tion studies indicate that adrenochromaffin cells
actively express both the hop1 splice variant of the
PAC1-R (Nogi et al., 1997a) and the VPAC1-R (Usdin et
al., 1994). In contrast, the expression level of the
VPAC2-R in the adrenal medulla is much lower (Usdin
et al., 1994). In the frog adrenal gland, type I PACAP
binding sites are expressed on both adrenocortical and
chromaffin cells (Yon et al., 1994). In the rat ovary, the

presence of PAC1-R and VPAC2-R mRNAs has been
reported (Usdin et al., 1994; Scaldaferri et al., 1996;
Kotani et al., 1997, 1998). Granulosa cells of the devel-
oping follicule express the VPAC2-R mRNA (Usdin et
al., 1994) whereas the corpus luteum contains the
PAC1-R mRNA (Kotani et al., 1997). In the placenta,
Northern blot analysis revealed the presence of both
VPAC1-R and VPAC2-R mRNA (Adamou et al., 1995;
Sreedharan et al., 1995). In the testis, type I PACAP
binding sites have been characterized in germ cells
(Shivers et al., 1991), Leydig cells (Romanelli et al.,
1997), and Sertolli cells (Heindel et al., 1992). However,
identification of the mRNA by in situ hybridization in-
dicates that the VPAC2-R gene, but not the PAC1-R or
the VPAC1-R genes, is expressed in germ cells (Usdin et
al., 1994; Krempels et al., 1995; El-Gehani et al.,
1998a,b). On prostate membranes, the predominant re-
ceptor subtype corresponds to the VPAC1-R (Juarranz et
al., 1999a) but PAC1-R mRNA is also expressed in hu-
man benign hyperplastic prostate (Solano et al., 1999).

In the digestive system, PACAP/VIP receptors are
found both in the alimentary canal and accessory
glands. In the human labial and submandibular gland,
type II sites are found in acinar cells (Tornwall et al.,
1994; Kusakabe et al., 1998). In the guinea pig stomach,
type II binding sites are present in chief cells (Felley et
al., 1992) whereas, in the rabbit stomach, type II sites
are borne by smooth muscle cells (Murthy et al., 1997).
Characterization of the receptor mRNAs confirmed that
only the VPAC2-R gene is expressed in the rat, guinea
pig, and rabbit stomach (Usdin et al., 1994; Teng et al.,
1998). Type II binding sites are also present at different
levels of the intestine (Prieto et al., 1981; Zimmerman et
al., 1988, 1989). In the human colon, type II sites are
located on epithelial cells (Broyart et al., 1981; Salomon
et al., 1993). Type II binding sites are found on liver
membranes (Guijarro et al., 1992, 1995; Gagnon et al.,
1994). Characterization of the receptor mRNAs by in
situ hybridization indicates that the VPAC1-R gene is
predominantly expressed in the rat liver (Usdin et al.,
1994).

The presence of PACAP/VIP receptors has been re-
ported in various components of the immune system
(Xin et al., 1994; Ganea, 1996). The PAC1-R gene is
expressed in rat peritoneal macrophages but not in peri-
toneal lymphocytes (Delgado et al., 1996a; Pozo et al.,
1997). VIP-preferring sites are present in human blood
mononuclear cells (Guerrero et al., 1981) and in murine
splenocytes (Tatsuno et al., 1991a). The VPAC1-R gene
is constitutively expressed in T-lymphocytes and thymo-
cytes (Waschek et al., 1995a; Delgado et al., 1996c,d;
Johnson et al., 1996). Stimulation through the T cell
receptors-associated CD3 complex induces the expres-
sion of the VPAC2-R mRNA in T-lymphocytes (Delgado
et al., 1996a).

PACAP/VIP receptors are found at all levels of the
respiratory tract. In the human trachea, type II binding
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sites are localized in acini and excretory ducts of sub-
mucosal glands (Fischer et al., 1992). High densities of
type II binding sites are also present in the lung (Lam et
al., 1990; Shivers et al., 1991; Bitar and Coy, 1993;
Sreedharan et al., 1995). The VPAC1-R mRNA is highly
expressed in the epithelium of large bronchi whereas the
VPAC2-R is present in small terminal bronchioles (Ishi-
hara et al., 1992; Sreedharan et al., 1993; Usdin et al.,
1994).

The presence of PACAP receptors has been investi-
gated in the cardiovascular system. In the heart, the
PAC1-R, VPAC1-R, and VPAC2-R have been character-
ized by Northern blot analysis (Gagnon et al., 1994;
Adamou et al., 1995; Wei and Mojsov, 1996a,b; Wong et
al., 1998). Messenger RNA encoding PAC1-R isoforms
and VPAC2-R are localized in cardiac ganglia (Gagnon
et al., 1994; Braas et al., 1998). The aortic tissue exhibits
mRNA for all PACAP receptors (Miyata et al., 1998).
However, in de-endothelized aortic tissue and cultured
vascular smooth muscle cells, only VPAC2-R mRNA is
detected, suggesting that VPAC2-R may mediate the
vasodilator effects of PACAP (Miyata et al., 1998).

Trancripts of VPAC2-R are found in a number of other
peripheral tissues such as the skeletal muscle (Wei and
Mojsov, 1996a,b), the loops of Henle and the collecting
tubules of the renal medulla (Usdin et al., 1994), and the
white fat (Wei and Mojsov, 1996b).

G. PACAP Receptors in Tumor Cells

Neoplastic cells from breast, lung, prostate, pancreatic,
colonic, and hepatocellular carcinoma often express type II
PACAP/VIP binding sites (Reubi, 1995, 1999a,b; Moody et
al., 1998; Busto et al., 1999). The presence of type II rec-
ognition sites has also been found in human pituitary
adenoma (Robberecht et al., 1993; Oka et al., 1998) and
brain glioma (Robberecht et al., 1994; Vertongen et al.,
1995a). Therefore, attempts have been made currently to

use iodinated VIP radioligands to localize tumor cells by
scintigraphy in various tissues (Moody et al., 1998; Ra-
derer et al., 1998; Virgolini et al., 1998; Reubi, 1999). In
vitro studies have confirmed that a number of tumor cell
lines express PACAP/VIP receptors. Type I binding sites
have been characterized in the rat pancreatic acinar
AR4–2J (Buscail et al., 1990) and medullary carcinoma
6/23 cell lines (Vertongen et al., 1994) and in the human
neuroblastoma cell line NB-OK (Cauvin et al., 1990; Ver-
tongen et al., 1997a). The hypothalamic GnRH neural cell
line GT1–7 expresses the VPAC2-R gene (Olcese et al.,
1997). Functional PACAP receptors have also been char-
acterized in adrenal pheochromocytoma PC12 cells (Wa-
tanabe et al., 1990) and adrenocortical NCI-H295 cells
(Haidan et al., 1998). Tumoral breast and intestinal cell
lines exhibit VPAC1-R mRNA whereas neuroectodermal
and pancreatic cell lines express both VPAC1-R and
VPAC2-R mRNAs (Waschek et al., 1995b; Jiang et al.,
1997; Madsen et al., 1998). It also has been reported that
the receptor subtypes expressed in rat pituitary tumor
cells are different from those found in normal adenohy-
pophysial cells (Rawlings, 1994; Vertongen et al., 1996),
suggesting a possible involvement of PACAP in the tumor-
igenic process.

H. Ontogenesis of PACAP Receptors

The evolution of the distribution and density of
PACAP/VIP receptors has been essentially studied in
the brain and adrenal gland. In the CNS, type I PACAP
binding sites are detected as early as E14, and their
density gradually increases throughout development to
reach a plateau between 1 and 4 months (Tatsuno et al.,
1994). The highest concentrations of type I PACAP bind-
ing sites are found in discrete regions of the germinative
neuroepithelia at the level of the metencephalon and
myelencephalon (Hill et al., 1994; Basille et al., 2000).
PAC1-R mRNA is first detected in the neural tube in

FIG. 8. Microphotograph of a sagittal section of adult rat brain showing the pattern of expression of the PAC1 receptor mRNA as determined by
in situ hybridization with a 32P-labeled cRNA probe. Cb, cerebellar cortex; DG, dentate gyrus of the hippocampus; Hy, hypothalamus; OB, olfactory
bulb; Pn, pontine nuclei; Th, thalamus; Tu, olfactory tubercle. Scale bar: 2 mm. Reprinted from Shioda et al. (1997a) with permission from Neuroscience
Research, Elsevier Science.
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9.5-day-old mouse and rat embryos (Sheward et al.,
1996, 1998; Waschek et al., 1998; Zhou et al., 1999a;
Jaworski and Proctor, 2000). From E9.5 to E11, the
density of PAC1-R mRNA increases in the neuroepithe-
lia of the mesencephalon and rhombencephalon (Sh-

eward et al., 1996, 1998; Shuto et al., 1996; Zhou et al.,
1999a). At E13, PAC1-R is expressed in the basal telen-
cephalon and in the neuroepithelia of the hippocampal
formation, cerebral cortex, and cerebellum (Zhou et al.,
1999a). In infant rats, PAC1-R mRNA is intensively

FIG. 9. Distribution of PACAP receptors in the adult rat cerebellum. A, distribution of PAC1 receptor mRNA as determined by in situ hybridization.
Reprinted from Shioda et al. (1997a) with permission from Neuroscience Research, Elsevier Science. B, expression of type I PACAP binding sites in
the cerebellum. Cb, cerebellar cortex. Scale bar: 1.5 mm.
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expressed in the olfactory bulb and the hippocampus
(Zhou et al., 1999a). The ontogeny of type I binding sites
has been investigated in detail in the rat cerebellum
during postnatal development (Basille et al., 1994). In
the external granule cell layer (EGL) and medulla, the
density of sites is high from birth to P8, and markedly
decreases from P8 to P25. In the internal granule cell
layer (IGL) and molecular layer, binding sites are first
detected at P8, and the density of sites gradually de-
creases from P8 to P25 (Basille et al., 1994). PACAP
activates both adenylyl cyclase and PLC in P8 cerebellar
granule cells (Basille et al., 1993, 1995; D’Agata et al.,
1996). The presence of functional PACAP receptors in a
germinative matrix such as the EGL suggests that
PACAP may act as a trophic factor during development
(See section IV, A, 4). Comparative distribution of
PACAP and PACAP receptors in the developing rat
brain reveals the existence of a good correlation between
the localization of the peptide and its receptors in all
germinative neuroepithelia, providing additional sup-

port for the involvement of PACAP as a neurotrophic
factor (Masuo et al., 1994; Tatsuno et al., 1994; Sheward
et al., 1996, 1998; Shuto et al., 1996; Lindholm et al.,
1998; Waschek et al., 1998).

Type II PACAP binding sites are also found in the
CNS at early embryonic stages, and the density of bind-
ing sites increases during postnatal development (Roth
and Beinfeld, 1985). The distribution pattern of the
VPAC1-R mRNA exhibits striking similarities with that
of PAC1-R mRNA, although the expression level of the
former is much lower than that of the latter (Pei, 1997;
Basille et al., 2000). From E14 to birth, the VPAC1-R
mRNA is expressed in the neuroepithelia bordering the
ventricles (Pei, 1997; Basille et al., 2000). Similarly, the
presence of the VPAC2-R mRNA has been detected by
Northern blot analysis in the mouse brain at E14 (Was-
chek et al., 1996). From E21 to adulthood, the VPAC2-R
mRNA is mainly detected in the suprachiasmatic nu-
cleus of the hypothalamus and ventrolateral nucleus of
the thalamus (Basille et al., 2000).

TABLE 7
Localization and relative abundance of PACAP receptor mRNAs in rat peripheral tissues

Structures PAC1-R VPAC1-R VPAC2-R References

Peripheral nervous system
Superior cervical ganglia 11/111 2 2 Nogi et al., 1997b; Braas and May, 1999
Cardiac ganglia 1 Braas et al., 1998

Eye
Retina 1 1 1 D’Agata and Cavallaro, 1998
Ganglion cells 11 Seki et al., 1997

Endocrine glands
Anterior pituitary 11/111 2/1 1/11 Lutz et al., 1993; Usdin et al., 1994; Rawlings et al., 1995; Vertongen

et al., 1995b; Hashimoto et al., 1996a; Shioda et al., 1997a
GH cells 1 2 2 Vertongen et al., 1995b
PRL cells 11 2 1 Vertongen et al., 1995b

Intermediate lobe of the pituitary 2/1 1 Usdin et al., 1994; Hashimoto et al., 1996a; Shioda et al., 1997a
Posterior pituitary 2/1 Hashimoto et al., 1996a; René et al., 1996; Shioda et al., 1997a
Adrenal gland 11 Hashimoto et al., 1993

Cortex 2 1 11 Usdin et al., 1994; Nogi et al., 1997a
Medulla-Chromaffin cells 11 11 1 Usdin et al., 1994; Moller and Sundler, 1996; Nogi et al., 1997a

Pancreas 1 11 1 Filipsson et al., 1998b; Tamakawa et al., 1998
Pancreatic beta islets 11 2 11 Usdin et al., 1994; Chatterjee et al., 1996; Filipson et al., 1998a

Liver 1 1 1 Hosoya et al., 1993; Usdin et al., 1994
Gonads

Testis 1 11 Usdin et al., 1994
Early germ cells 2 2 11 Usdin et al., 1994; Krempels et al., 1995
Seminiferous tubules 1 Krempels et al., 1995

Ovary
Granulosa and cumulus cells 1 2 1/11 Usdin et al., 1994; Scaldaferri et al., 1996; Shioda et al., 1996; Kotani

et al., 1998; Park et al., 2000
Corpus luteum 1 Kotani et al., 1997

Urinary tract
Kidney 1 1 Usdin et al., 1994

Respiratory tract
Lung 1 11 1 Ishihara et al., 1992; Hosoya et al., 1993; Usdin et al., 1994;

Chatterjee et al., 1996; Pei, 1998
Tracheo-bronchial wall 1 1 Ishihara et al., 1992; Sreedharan et al., 1993; Usdin et al., 1994

Digestive system
Intestine 11 Ishihara et al., 1992; Usdin et al., 1994
Stomach 2 1 Usdin et al., 1994; Teng et al., 1998

Gastric enterochromaffin-like cells 1 Zeng et al., 1999
Lymphoid tissues

Spleen 2 1/11 Usdin et al., 1994
Thymus 11 1 Usdin et al., 1994

Macrophages 1 Pozo et al., 1997
Lymphocytes 2 1 1 Waschek et al., 1995a; Delgado et al., 1996c,d; Ganea 1996; Johnson

et al., 1996

The symbols provide a semi-quantitative evaluation of the density of PACAP receptor mRNAs. 111, high density; 11, moderate density; 1, low density; 2, no
hybridization signal.
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The presence of PACAP binding sites has been studied
by autoradiography in the human adrenal gland during
the second trimester of gestation (Yon et al., 1998). At
this stage, cells derived from the ectoderm migrate in-
side the fetal cortical zone to form the medulla (Cooper
et al., 1990; Ehrhart-Bornstein et al., 1997). In 14- to
20-week old fetuses, PACAP binding sites are exclu-
sively located on adrenochromaffin cells (Yon et al.,
1998). PACAP stimulates adenylyl cyclase activity in
cultured adrenal cells, indicating that the binding sites
found in the fetal human adrenal medulla actually cor-
respond to functional receptors (Yon et al., 1998; L.
Breault, L. Yon, M. Montéro, L. Chouinard, V. Contesse,
C. Delarue, A. Fournier, J.G. LeHoux, H. Vaudry and N.
Gallo-Payet, submitted). In newborn rats, the occur-
rence of PAC1-R mRNA has been reported in the me-
dulla (Moller and Sundler, 1996). It has also been found
that PACAP induces neurite outgrowth in cultured neo-
natal chromaffin cells (Wolf and Krieglstein, 1995).
Taken together, these data suggest that PACAP may
play a crucial role in the ontogenesis of the adrenal
gland in mammals.

I. Phylogenetic Evolution of PACAP Receptors

The location of type I PACAP binding sites has been
investigated in the CNS of the frog Rana ridibunda
(Jeandel et al., 1999). The distribution pattern of
PACAP binding sites appears to be very similar to that
previously described in the rat brain (Shioda et al.,
1997a). In particular, the olfactory bulb, pallium, stria-
tum, habenular nuclei, and most nuclei of the thalamus
contain moderate to high densities of PACAP receptors
in the frog and rat (Shioda et al., 1997a; Jeandel et al.,
1999). Type II PACAP binding sites have been localized
in the brain of several submammalian species, including
the pigeon Columba livia, the chicken Gallus domesti-
cus, the snake Bothros atrox, the frog Rana esculenta,
and the fish Salmo trutta fario (Dietl et al., 1990; Hof et
al., 1991; Kuenzel et al., 1997). These studies have
shown that the distribution pattern of type II sites has
been relatively well conserved during evolution. In par-
ticular in fish, amphibians, reptiles, and birds (Dietl et
al., 1990; Hof et al., 1991) as in mammals (Martin et al.,
1987; Masuo et al., 1992; Samejima et al., 1993), type II
binding sites are particularly abundant in brain regions
involved in the processing of specific sensory inputs.

The PAC1-R cDNA has been cloned in the goldfish
Carassius auratus (Wong et al., 1998), the toad Xenopus
laevis (Hu et al., 2000), the frog Rana ridibunda (Alex-
andre et al., 1999), and the chicken Gallus domesticus
(Peeters et al., 1999). The goldfish PAC1-R exhibits 85%
sequence identity with the human and rat counterparts
(Wong et al., 1998). A VPAC-R cDNA has been cloned in
the goldfish (Chow et al., 1997) and the frog (Alexandre
et al., 1999). The frog VPAC-R cDNA exhibits the high-
est sequence identity (65%) with the human VPAC1-R
but possesses pharmacological and tissue distribution

characteristics of both mammalian VPAC1-R and
VPAC2-R (Alexandre et al., 1999). Partial cDNA se-
quences corresponding to the spanning TMs 2 to 6 of the
VPAC receptors also have been characterized in other
nonmammalian species including chicken, pigeon, liz-
ard, and salmon (Chow et al., 1997). Comparison of
these partial nucleotide sequences with those of the
human and rat VPAC1-R cDNAs indicates that strong
evolutionary pressure has acted to conserve the primary
structure of the VPAC1-R across vertebrates.

It is now well established that neuropeptide receptors
frequently exist in a variety of subtypes that are encoded
by distinct genes (Darlison and Richter, 1999). Because
the nucleotide sequence in the protein-coding regions of
the three PACAP receptor cDNAs are highly conserved
(50% homology between any two receptors), it appears
that the three PACAP receptor genes must have arisen
from a common ancestral gene that was duplicated and
subsequently diverged during the course of evolution
(Ishihara et al., 1992; Lutz et al., 1993; Pisegna and
Wank, 1993; Inagaki et al., 1994). The fact that the
PAC1-R and VPAC2-R genes are both located on the
same chromosome (human chromosome 7 and rat chro-
mosome 4) whereas the VPAC1-R gene is located on
different chromosomes (human chromosome 3 and rat
chromosome 8), provides a clue regarding the evolution-
ary history of the three genes (Cai et al., 1995; Sreedha-
ran et al., 1995; Brabet et al., 1996; Mackay et al., 1996).
According to this observation, a first duplication would
have yielded the VPAC1-R gene and a common ancestor
for the PAC1-R and VPAC2-R genes. At a later stage in
evolution, a second duplication of this ancestor gene
would have produced two separate genes encoding
PAC1-R and VPAC2-R.

IV. Biological and Pharmacological Effects of
PACAP

The wide distribution of PACAP and its receptors
suggests that the peptide may exert pleiotropic physio-
logical functions. As a matter of fact, PACAP has now
been shown to act as a hormone, a neurohormone, a
neurotransmitter, and a trophic factor in a number of
tissues.

A. Effects of PACAP on the CNS

1. Actions on the hypothalamus. The most abundant
population of PACAP-containing neurons and the high-
est density of PACAP binding sites are found in the
hypothalamus (Tables 1 and 4; Arimura, 1992; Arimura
and Shioda, 1995). In particular, a dense accumulation
of PACAP-immunoreactive neurons and PACAP recep-
tors are present in the magnocellular region of the PVN
and SON where the neurosecretory perikarya producing
oxytocin and vasopressin are located (Köves et al., 1990,
1991; Masuo et al., 1992; Kimura et al., 1994; Tamada et
al., 1994; Hannibal et al., 1995a,b; Shioda et al., 1997b;
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Legradi et al., 1998). Intracerebroventricular injection of
PACAP causes a marked enhancement of Fos-LI in
these two hypothalamic nuclei (Nomura et al., 1999).
The effects of PACAP on the electrophysiological activity
of PVN and SON neurons have been studied on rat brain
slices (Uchimura et al., 1996; Shibuya et al., 1998a,b).
Administration of PACAP within the PVN and SON
increases the firing rate activity and causes membrane
depolarization of magnocellular neurons. Intracerebro-
ventricular and intracisternal injection of PACAP
causes a dose-dependent elevation of plasma vasopres-
sin concentration (Murase et al., 1993; Seki et al.,
1995b). In the neural lobe of the pituitary, PACAP stim-
ulates the release of oxytocin and vasopressin through
activation of the cAMP/protein kinase A (PKA) signaling
pathway (Lutz-Bucher et al., 1996).

PACAP has also been shown to modulate the activity
of various other hypothalamic neuronal populations. For
instance, central administration of PACAP produces sig-
nificant increases in GnRH, somatostatin, and CRF gene
expression, which are prevented by concomitant injec-
tion of the PACAP antagonist PACAP(6–38) (Li et al.,
1996; Grinevich et al., 1997). Intracerebroventricular
injection of PACAP enhances the level of the dopamine
metabolite DOPAC in the sheep medial basal hypothal-
amus (Anderson and Curlewis, 1998) and stimulates the
expression of PRL mRNA in the rat hypothalamus (Bre-
dow et al., 1994). In the ovariectomized ewe, infusion of
PACAP in the arcuate nucleus of the hypothalamus
reduces plasma PRL concentration (Anderson et al.,
1996). Similarly, injection of PACAP in the medial basal
hypothalamus suppresses luteinizing hormone (LH) se-
cretion and LH pulse frequency (Anderson et al., 1996).
Taken together, these data indicate that PACAP may
act within the hypothalamus as a neurotransmitter or
neuromodulator to regulate the secretion of neurohy-
pophysial and hypophysiotropic neurohormones.

In rat, daily variations in the density of PAC1-R
mRNA are observed in the suprachiasmatic and su-
praoptic nuclei with two peaks at noon and midnight,
but not in the cingulate cortex (Cagampang et al., 1998).
Similar biphasic variations of VPAC2-R mRNA levels
are observed in the suprachiasmatic nucleus (Cagam-
pang et al., 1998; Shinohara et al., 1999). These results
indicate that PACAP receptors are differentially ex-
pressed in the rat brain across the 24-h cycle, suggesting
that PACAP is involved in the circadian pacemaker
clock. Consonant with this hypothesis, injection of
PACAP at the vicinity of the suprachiasmatic nucleus
has been found to reset the circadian clock in a manner
similar to light (Chen et al., 1999a; Gillette and Tisch-
kau, 1999; Harrington et al., 1999).

2. Actions of PACAP on the pineal gland. Circadian
variations in PACAP content occur in the rat pineal
(Fukuhara et al., 1998), and a high density of PACAP
binding sites is present in the pineal gland (Table 4;
Masuo et al., 1992; Simonneaux et al., 1998), suggesting

that PACAP is involved in the regulation of the rhyth-
micity of melatonin production. Exposure of pinealocytes
to graded concentrations of PACAP causes a dose-depen-
dent increase in the activity of two key enzymes of the
melatonin biosynthetic pathway, serotonin-N-acetyl-
transferase (Yuwiler et al., 1995) and hydroxyindole-O-
methyltransferase (Ribelayga et al., 1997). Consistent
with these observations, PACAP has been found to stim-
ulate melatonin secretion by perifused rat pineal gland
(Simonneaux et al., 1993) and cultured pinealocytes
(Chik and Ho, 1995; Simonneaux et al., 1998). The stim-
ulatory action of PACAP on melatonin release is associ-
ated with calcium influx through L-type calcium chan-
nels (Chik et al., 1997) and phosphorylation of cAMP-
responsive element-binding protein (CREB) (Schomerus
et al., 1996, 1999). The effect of PACAP on CREB phos-
phorylation culminates in the first part of the dark pe-
riod of the 24-h cycle (Maronde et al., 1997) in concom-
itance with the peak of PACAP content in the pineal
gland (Fukuhara et al., 1998). PACAP causes phosphor-
ylation of CREB in the suprachiasmatic nucleus during
the light period, and the effect of PACAP on CREB
phosphorylation is suppressed by melatonin (Vanecek et
al., 1987; Kopp et al., 1997; Von Gall et al., 1998). Sim-
ilarly, melatonin suppresses the PACAP-induced stimu-
lation of cAMP production in the whole chicken hypo-
thalamus and in the rat suprachiasmatic nucleus and
pituitary cells, indicating that the hypothalamus is a
site for a functional interaction between PACAP and the
pineal hormone melatonin (Von Gall et al., 1998; Kopp et
al., 1999; Nowak et al., 1999; Slamar et al., 2000).

3. Behavioral actions. A number of neuropeptides
have been shown to participate in the control of appetite
and feeding behavior (Kalra et al., 1999). In particular,
neuropeptide tyrosine (NPY), which, contrary to
PACAP, inhibits adenylyl cyclase activity (Chance et al.,
1989), is a highly potent orexigenic peptide (Clark et al.,
1984; Zimanyi et al., 1998). The high concentration of
PACAP-expressing neurons in the PVN and ventrome-
dial hypothalamic nuclei (Table 1; Arimura, 1992;
Arimura and Shioda, 1995; Hannibal et al., 1995a; Leg-
radi et al., 1998), two hypothalamic regions that play a
role in the regulation of food intake (Luiten et al., 1987;
Leibowitz, 1988), suggests that PACAP could be in-
volved in the control of food consumption (Christophe,
1998). Indeed, i.c.v. injection of PACAP decreases food
uptake (Morley et al., 1992; Chance et al., 1995; Mizuno
et al., 1998) and antagonizes the orexigenic effect of NPY
(Morley et al., 1992). Concurrently, injection of PACAP
in the vicinity of the perifornical lateral hypothalamus
stimulates drinking (Puig de Parada et al., 1995); recip-
rocally, water deprivation causes an increase in
PACAP-LI in cell bodies and nerve fibers of the subfor-
nical organ (Nomura et al., 1997), suggesting that
PACAP may play a role in the regulation of dipsic be-
havior.
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Intracerebroventricular injection of PACAP enhances
grooming (Morley et al., 1992) and increases the motor
activity and the rearing behavior in rat (Masuo et al.,
1995). Central administration of PACAP or VIP at the
onset of darkness enhances rapid eye movement sleep
(Bredow et al., 1994; Fang et al., 1995; Bourgin et al.,
1997; Ahnaou et al., 1999). Intrathecal injection of
PACAP suppresses the flexion reflex induced by electri-
cal stimulation of the plantar nerve (Zhang et al.,
1993a). The possible effect of PACAP in the transmis-
sion of noxious stimuli is currently a matter of debate:
PACAP has been found to reduce the instances of flinch-
ing behavior in the formalin test, indicating that the
peptide may possess antinociceptive properties
(Yamamoto and Tatsuno, 1995), whereas other reports
suggest that PACAP may play a facilitatory role in pain
transmission (Narita et al., 1996; Xu and Wiesenfeld-
Hallin, 1996; Dickinson et al., 1997, 1999; Dickinson and
Fleetwood-Walker, 1999; Mulder et al., 1999). The fact
that the Drosophila memory gene amnesiac encodes a
peptide with significant sequence similarity with
PACAP indicates that, in invertebrates as in verte-
brates, PACAP and related peptides could also exert
behavioral activities (DeZazzo et al., 1999).

4. Neurotrophic actions. The presence of high con-
centrations of PACAP and PACAP receptors in germi-
native areas of the developing brain indicates that the
peptide may exert important functions during ontogen-
esis of the CNS. Indeed, in cerebellar granule cells cul-
tured in conditions promoting apoptosis, PACAP inhib-
its programmed cell death (Fig. 10; Cavallaro et al.,
1996; Chang et al., 1996; Campard et al., 1997; Gonzalez
et al., 1997a; Villalba et al., 1997; Vaudry et al., 2000)
and stimulates neurite outgrowth (Fig. 10; Gonzalez et
al., 1997a). Second messenger studies have been con-
ducted to investigate the mechanisms involved in the
neurotrophic activity of PACAP (Fig. 11; Gonzalez et al.,
1997b). Activation of PAC1-R induces a dose-dependent
stimulation of cAMP production and polyphosphoinosi-
tide hydrolysis (Gonzalez et al., 1994; Basille et al.,

1995; Favit et al., 1995; Villalba et al., 1997). In vitro
experiments have shown that the effect of PACAP on cell
survival is mediated through activation of the adenylyl
cyclase pathway, leading to phosphorylation of the ex-
tracellular signal-regulated (ERK)-type of mitogen-acti-
vated protein (MAP) kinase (Villalba et al., 1997) and to
an increase in c-fos gene expression (Fig. 11; Vaudry et
al., 1998a,b). In cultured granule cells, PACAP also
stimulates calcium mobilization (Gonzalez et al., 1996;
Mei, 1999) and blocks transient potassium currents
(Zerr and Feltz, 1994), two processes often involved in
programmed cell death regulation (Colom et al., 1998;
Kobayashi and Mori, 1998; Krebs, 1998). The effect of
PACAP on the development of the rat cerebellum has
been investigated recently in vivo (Vaudry et al., 1999).
Injection of PACAP at the surface of the cerebellum of
8-day-old pups induces a transient enlargement of the
volume of the cerebellar cortex (Fig. 12), with a maxi-
mun effect at P12, which can be accounted for by an
increase in the number of granule cells in the EGL, the
molecular layer, and the IGL (Fig. 13). The effect of
PACAP on the number of granule cells is blocked by the
antagonist PACAP(6–38). The fact that the PACAP an-
tagonist produces by itself a slight inhibition of the
number of granule cells in the IGL indicates that endog-
enous PACAP may exert a physiological role in the de-
velopment of the rat cerebellum (D. Vaudry, B. J. Gonza-
lez, M. Basille, T. P. Pamantung, A. Fournier and H.
Vaudry, submitted).

On cortical neuron precursors, PACAP decreases the
proportion of mitotic cells and promotes neuroblast dif-
ferentiation, indicating that the peptide is also involved
in the development of the cerebral cortex (Lu and Di-
Cicco-Bloom, 1997; Lu et al., 1998; DiCicco-Bloom et al.,
1998). After a week of culture in the presence of serum,
cortical neuroblasts turn into mature neurons that ex-
press glutamate and its receptors. It should be recalled
that micromolar concentrations of glutamate exert a
slight protective action on cortical neurons in primary
culture whereas millimolar doses of glutamate induce

FIG. 10. Microphotographs illustrating the effect of PACAP38 on cell survival and neurite outgrowth of rat cerebellar granule cells after 48 h of
culture. Scale bar: 25 mm. Reprinted from Gonzalez et al. (1997) with permission from Neuroscience, Elsevier Science.
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apoptotic cell death (Choi et al., 1987; Koh et al., 1991;
Sagara and Schubert, 1998). In this model, PACAP po-
tentiates the effect of otherwise marginally effective con-
centrations of glutamate ('1 mM) on c-fos expression
(Martin et al., 1995), arachidonic acid release (Stella and
Magistretti, 1996; Magistretti et al., 1998a), and brain-
derived neurotrophic factor production (Pellegri et al.,
1998). In contrast, PACAP protects cultured cortical

neurons from the cytotoxic effects of high ('1 mM) con-
centrations of glutamate (Morio et al., 1996). A neuro-
protective effect of PACAP on glutamate-induced neuro-
toxicity also has been reported in cultured retinal
neurons (Shoge et al., 1999). Most of the actions of
PACAP on cortical neurons are mediated through the
cAMP pathway (Martin et al., 1995; Morio et al., 1996)
although it has been reported that PACAP can directly

FIG. 11. Schematic representation of the intracellular mechanisms likely involved in the trophic activity of PACAP on cerebellar granule cells. AC,
adenylyl cyclase; DG, diacylglycerol; IP3, inositol trisphosphate; MAPKK, mitogen-associated protein-kinase-kinase; MAPKKK, MAPKK-kinase.
(Adapted from Vaudry et al., 1998a,b).
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modulate N-methyl-D-aspartate receptors indepen-
dently of intracellular second messengers (Liu and Mad-
sen, 1997, 1998). On these neurons, PACAP prevents the
neurotoxic effect of lipopolysaccharide administration
(Kong et al., 1999). In mesencephalic dopaminergic neu-
rons, PACAP counteracts the effects of 6-hydroxydopa-
mine neurotoxicity (Takei et al., 1998). Ischemic death of
hippocampal neurons can be prevented by infusing
PACAP (Uchida et al., 1996). PACAP is still effective to
protect cell death when treatment is started 24 h after
the ischemia, which suggests that PACAP may have
therapeutic potency in treating cerebral injuries. After

focal cerebral ischemia, the tumor suppressor p53 and
the zinc finger protein Zac-1 (two genes responsible for
cell cycle arrest and apoptosis control) are up-regulated
(Gillardon et al., 1998; Ciani et al., 1999). The p53 and
Zac proteins have been demonstrated to regulate the
PAC1-R gene, which could, in the presence of its agonist,
counteract the damages of ischemia. Consistent with
this finding, PACAP and PAC1-R mRNA have been
shown to increase in the cortex and the hippocampus
after traumatic brain injury (Skoglösa et al., 1999a).
Taken together, these studies suggest that during devel-
opment, PACAP acts as a neurotrophic factor whereas,
in the adult brain, the peptide appears to function as a
neuroprotective agent that attenuates the neuronal
damage resulting from various insults (Arimura, 1998;
Brenneman et al., 1999). A 4-amino acid lipophilic frag-
ment of PACAP (stearyl-Lys-Lys-Tyr-Leu-NH2) that of-
fers enhanced bioavailability and stability has been de-
veloped, and it has been reported that intranasal
administration of this PACAP derivative provides neu-
roprotection in vivo (Gozes et al., 1999).

In the dorsal root ganglions of embryos and newborn
rats, the PACAP gene is expressed in sensory neurons
(Lioudyno et al., 1998), and the levels of PACAP and
PAC1-R mRNAs are up-regulated by axotomy (Zhang et
al., 1996, 1998; Zhou et al., 1999b). Treatment of cul-
tured ganglion neurons with PACAP increases cell sur-
vival and promotes neurite outgrowth (Lioudyno et al.,
1998), supporting the view that PACAP exerts beneficial
effects in nerve restoration after injury.

5. Actions on glial cells. Consistent with the occur-
rence of PACAP receptors in astroglial cells, PACAP has
been shown to mobilize intracellular calcium stores (Tat-
suno and Arimura, 1994) and to activate a quinine-
sensitive potassium outward current (Ichinose et al.,
1998) in rat astrocytes. In brain slices from newborn rat,
PACAP enhances the number of glial precursor cells
that express the proenkephalin-A gene in the neocortical
subventricular zone of the rat brain (Just et al., 1998). In
cultured astrocytes, PACAP also stimulates the MAP
kinase ERK2, suggesting that PACAP may regulate pro-
liferation of astroglial cells (Moroo et al., 1998). In sup-
port of this notion, in vivo administration of a VIP an-
tagonist induces a dramatic reduction of the density of
astrocytes in the cortex of E17 mouse embryos, and this
effect is reversed by cotreatment with PACAP or the
VPAC2-R agonist RO 25–1553 (Zupan et al., 1998), in-
dicating that PACAP is actually involved in neocortical
astrocytogenesis. In astrocytes, PACAP increases the
production of neurotrophic factors that are responsible
for neuronal proliferation and/or differentiation (Ashur-
Fabian et al., 1997). In this respect, PACAP has been
shown to reduce ciliary neurotrophic factor mRNA level
(Nagao et al., 1995). In contrast, PACAP activates brain-
derived neurotrophic factor, a trophic peptide involved
in neuronal plasticity (Pellegri et al., 1998) and stimu-
lates the secretion of interleukin (IL)-6, which acts as a

FIG. 12. Time course of the effect of PACAP on the volume of the
cerebellar cortex. Eight-day-old (P8) rats were treated with saline (open
columns), 0.01 mg of PACAP38 (hatched columns), or 1 mg of PACAP38
(filled columns) up to P16. *P , .05 versus control. Reprinted from
Vaudry et al. (1999) with permission from the Proceedings of the National
Academy of Sciences of the USA, the National Academy of Sciences of the
USA.

FIG. 13. Effects of PACAP on the histogenesis of the cerebellar cortex.
Eight-day-old (P8) rats were injected with saline (control) or 1 mg
PACAP38 at the surface of the cerebellar cortex, and the thickness of the
EGL, molecular layer (Mol), and IGL were measured at P12. *P , .05 as
compared with control. Scale bar: 100 mm. Reprinted from Vaudry et al.
(1999) with permission from the Proceedings of the National Academy of
Sciences of the USA, the National Academy of Sciences of the USA.
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trophic cytokine in the CNS (Gottschall et al., 1994).
Surprisingly, some of the neuroprotective effects of VIP
that involve astrocytes cannot be mimicked by PACAP,
suggesting the involvement of a VIP-specific receptor
that remains to be characterized (Gressens et al., 1997,
1998a,b, 1999; Hill et al., 1999).

B. Effects of PACAP on the Pituitary Gland

The ability of PACAP to stimulate cAMP formation in
pituitary cells provided the first evidence that the pep-
tide may act as a hypophysiotropic neurohormone
(Christophe, 1993; Arimura and Shioda, 1995; Nussdor-
fer and Malendowicz, 1998). The action of PACAP on the
adenohypophysis has been reviewed in detail by Rawl-
ings and Hezareh (1996). Among the different hypophy-
siotropic neuropeptides identified so far, the situation of
PACAP is rather unique in that PACAP receptors are
expressed by all endocrine cell types and by folliculo-
stellate (FS) cells of the adenohypophysis (Vigh et al.,
1993). Cytofluorometric studies, conducted on dispersed
rat pituitary cells, have shown that PACAP actually
induces calcium mobilization in all categories of endo-
crine cells (Canny et al., 1992; Gracia-Navarro et al.,
1992; Rawlings et al., 1993, 1994; Hezareh et al., 1996;
Rawlings and Hezareh, 1996). Consistent with this ob-
servation, PACAP stimulates the release of GH, adreno-
corticotropic hormone (ACTH), LH, follicle-stimulating
hormone (FSH), and PRL (Goth et al., 1992; Hart et al.,
1992; Leonhardt et al., 1992; Coleman and Bancroft,
1993; Arbogast and Voogt, 1994; Coleman et al., 1996;
Koch and Lutz-Bucher, 1993; Perrin et al., 1993; Hashi-
zume et al., 1994; Velkeniers et al., 1994; Martinez-
Fuentes et al., 1998c; Ortmann et al., 1999). The effects
of PACAP on the different pituitary cell types are sum-
marized in Table 8.

Gonadotrope cells. Gonadotropin secretion is pre-
dominantly regulated by GnRH (Conn et al., 1981; Wa-
ters and Conn, 1991). There is now evidence that
PACAP acts either alone or synergistically with GnRH
to stimulate LH and FSH mRNA expression (Tsujii et
al., 1995; Tsujii and Winters, 1995; McArdle and Counis,
1996; Winters et al., 1997) and gonadotropin secretion
(Culler and Paschall, 1991; Schomerus et al., 1994; Tsu-
jii et al., 1994; Tsujii and Winters, 1995; Petersen et al.,
1996; Ortmann et al., 1999). In the male rat, intra-atrial
injection of PACAP, but not VIP, increases plasma LH
level (Leonhardt et al., 1992; Osuga et al., 1992). Peri-
fusion of rat anterior pituitary cells with PACAP induces
a transient stimulation of gonadotropin release and a
concomitant increase in cytosolic calcium concentration
(Canny et al., 1992; Rawlings et al., 1994; Tsujii et al.,
1994). The effect of PACAP on gonadotropin mRNA ex-
pression involves the cAMP/PKA pathway (Ishizaka et
al., 1993; Winters et al., 1997) whereas the stimulatory
effect on FSH/LH release is under the control of calcium
mobilization (Canny et al., 1992; Masumoto et al., 1995).
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Somatotrope cells. Secretion of GH is stimulated by
GRF and inhibited by somatostatin (Sheppard et al.,
1985). Administration of PACAP to cultured pituitary
cells causes a significant increase in both GH mRNA
expression and GH release (Velkeniers et al., 1994;
Rousseau et al., 1999). In contrast, PACAP does not
modify GH secretion from superfused cells (Velkeniers
et al., 1994), suggesting that the stimulatory effect of
PACAP on pituitary cells in static incubation involves
the paracrine mediation of other hormones. PACAP ex-
erts an additive effect on GRF-stimulated GH output
(Hashizume et al., 1994), and the stimulatory activity of
PACAP on GH release is inhibited by the addition of
somatostatin (Goth et al., 1992; Hashizume et al., 1994).
PACAP increases intracellular calcium concentration in
frog and rat somatotrope cells (Canny et al., 1992; Gra-
cia-Navarro et al., 1992; Yada et al., 1993), and the
PACAP-evoked calcium response is blocked by the PKA
antagonist Rpc-AMPs, indicating that the effect of
PACAP is mediated through activation of the cAMP/
PKA pathway (Rawlings et al., 1993, 1995). The eleva-
tion of cytosolic calcium plays a pivotal role in PACAP-
induced GH secretion (Martinez-Fuentes et al.,
1998a,b,c). The maximal effect of PACAP on GH release
is observed after 15 min of treatment whereas prolonged
incubation or pretreatment with PACAP causes desen-
sitization of the secretory response (Goth et al., 1992;
Wei et al., 1993).

Lactotrope cells. The secretion of PRL is predomi-
nantly under the tonic inhibitory control exerted by do-
pamine (Martinez de la Escalera and Weiner, 1992). The
secretory activity of lactotrope cells is also regulated by
various hypothalamic neuropeptides (Ruberg et al.,
1981; Carbajal and Vitale, 1997). In particular, VIP and
to a lesser extent PHI and secretin stimulate PRL secre-
tion (Vijayan et al., 1979; Enjalbert et al., 1980; Kimura
et al., 1987; Muratori et al., 1994; Judd, 1995; Youngren
et al., 1998). It also has been shown that VIP and PHI
enhance the electrophysiological activity of lactotrope
cells (Hedlund et al., 1988). In fact, VIP is synthesized
(Arnaout et al., 1986) and released by rat lactotrope cells
(Nagy et al., 1988), indicating that VIP and PHI could
act as autocrine stimulators of PRL secretion. The ob-
servation that VIP-related peptides stimulate lactotrope
cell activity prompted several groups to investigate the
ability of PACAP to modulate PRL secretion. Intrave-
nous injection of PACAP to anesthetized rats induces a
4-fold increase of plasma PRL concentration (Leonhardt
et al., 1992; Yamauchi et al., 1995). The effect of sys-
temic administration of PACAP can be accounted for, at
least in part, by a direct action at the pituitary level
because the peptide can also enhance plasma PRL level
in hypothalamus-lesioned animals (Jarry et al., 1992).
In vitro studies have confirmed that PACAP exerts a
direct stimulatory effect on cytosolic calcium concentra-
tions in frog and rat lactotrope cells (Canny et al., 1992;
Gracia-Navarro et al., 1992). However, it should be

noted that PACAP increases the intracellular calcium
level in 45% of PRL cells in frog (Gracia-Navarro et al.,
1992) but only in 9% of PRL cells in rat (Canny et al.,
1992). Studies aimed at investigating the effect of
PACAP on PRL secretion by pituitary cells have led to
controversial results. It has been initially reported that
PACAP is devoid of PRL-releasing activity in cultured
rat adenohypophysial cells (Miyata et al., 1989). PACAP
was also found to have no effect on PRL release from
cultured ovine (Sawangjaroen et al., 1997) and bovine
(Hashizume et al., 1994) pituitary cells. In contrast,
other studies have shown that PACAP can either stim-
ulate (Nagy et al., 1993) or inhibit (Jarry et al., 1992)
PRL release from rat pituitary cells. To elucidate the
origin of these apparent discrepancies, the effects of
PACAP on PRL secretion have been compared in cul-
tures of dispersed or aggregated cells and in pituitary
fragments (Benter et al., 1995). In monolayer cultures,
PRL release was inhibited by PACAP, whereas in cul-
tures of aggregated cells and in pituitary fragments,
PRL output was stimulated (Benter et al., 1995). These
data suggest that cell-to-cell communication plays a cru-
cial role in determining the type of action of PACAP on
PRL secretion. Whereas i.v. injection of PACAP pro-
duces a significant increase in plasma PRL concentra-
tion in rat (Jarry et al., 1992; Leonhardt et al., 1992;
Yamauchi et al., 1995), systemic administration of
PACAP has no effect on PRL level in sheep (Sawang-
jaroen and Curlewis, 1994), suggesting the existence of
marked species differences.

Besides its hypophysiotropic action at the pituitary
level, PACAP may also regulate PRL secretion through
modulation of various hypothalamic factors. In particu-
lar, in sheep, injection of PACAP into the medial basal
hypothalamus stimulates dopamine release from tu-
beroinfundibular neurons leading to an inhibition of
PRL secretion (Anderson and Curlewis, 1998). PACAP
has also been found to decrease the activity of pyroglu-
tamyl peptidase II (Vargas et al., 1998), a TRH-specific
ectoenzyme that cleaves the pyroglutamyl-histidyl pep-
tide bond of TRH (Charli et al., 1998). Because TRH is
known to activate PRL secretion (Martinez de la Es-
calera and Weiner, 1992), the inhibition of pyroglutamyl
peptidase II induced by PACAP may cause indirect stim-
ulation of PRL release through reduction of TRH degra-
dation. Taken together, these data indicate that PACAP
may affect PRL secretion either via presynaptic action
on hypothalamic neurons or via postsynaptic regulation
of the activity of hypophysiotropic neurohormones.

Corticotrope cells. The secretion of ACTH is primar-
ily regulated by CRF (Rivier et al., 1982a) and PACAP
has been shown to activate CRF gene expression in the
rat PVN (Grinevich et al., 1997). Intravenous adminis-
tration of PACAP provokes a dose-related increase in
plasma ACTH level in rat (Leonhardt et al., 1992) and
human (Chiodera et al., 1996). The effect of PACAP on
circulating ACTH in human is not mimicked by VIP,
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indicating that the peptide acts through PAC1-R. In
vitro, PACAP stimulates ACTH secretion from super-
fused (Miyata et al., 1989) or cultured rat pitutary cells
(Hart et al., 1992). However, in rat, the effect of PACAP
on ACTH secretion by cultured cells does not reach
significance until 24 h, suggesting that PACAP does not
exert a direct stimulatory action on corticotrope cells
(Hart et al., 1992). Other in vitro studies have shown
that PACAP does not stimulate ACTH secretion from rat
pituitary cells within 3 h of incubation (Culler and Pas-
chall, 1991; Koch and Lutz-Bucher, 1993). In the frog
Rana rididunda, PACAP causes an increase in cytosolic
calcium concentration in 25% of corticotrope cells (Gra-
cia-Navarro et al., 1992) and stimulates ACTH secretion
within 4 h (Martinez-Fuentes et al., 1994), indicating
that, in amphibians, PACAP directly activates cortico-
trope cells.

Thyrotrope cells. In vivo administration of PACAP
does not affect plasma thyroid-stimulating hormone
(TSH) concentrations in rat (Hart et al., 1992) and hu-
man (Chiodera et al., 1996). Consistent with this obser-
vation, PACAP does not modify TSH secretion from cul-
tured rat anterior pituitary cells (Culler and Paschall,
1991), and only a few thyrotrope cells express PACAP
binding sites (Vigh et al., 1993). In frog, PACAP in-
creases free cytosolic calcium concentration in thyro-
trope cells (Gracia-Navarro et al., 1992) but has no effect
on TSH release (Martinez-Fuentes et al., 1994).

FS cells. Besides endocrine cells, the anterior pitu-
itary encompasses a population of glial-like cells named
FS cells. Incubation of cultured rat FS cells with PACAP
causes stimulation of cAMP formation and IL-6 produc-
tion (Tatsuno et al., 1991c). Similarly, PACAP increases
cAMP level and stimulates vascular endothelial growth
factor and IL-6 secretion in the mouse FS-like cell line
TtT/GF (Matsumoto et al., 1993; Gloddek et al., 1999).
Because IL-6 is involved in the differentiation of pitu-
itary cells (Renner et al., 1998) and stimulates the re-
lease of various adenohypophysial hormones (Renner et
al., 1998), several indirect effects of PACAP on endocrine
pituitary cells may be mediated through activation of FS
cells (Benter et al., 1995). In support of this notion, FS
cells have been shown to play a pivotal role in paracrine
interactions within the anterior pituitary (Baes et al.,
1987; Allaerts and Denef, 1989; Valentijn et al., 1998).

Pituitary fibroblasts. The anterior pituitary gland
also contains fibroblasts, a type of agranular connective
cells (Gospodarowicz, 1979). PACAP has been shown to
stimulate cAMP formation in cultured pituitary fibro-
blasts, suggesting that the peptide may modulate fibro-
blast proliferation (Koch and Lutz-Bucher, 1992b).

Melanotrope cells. The intermediate lobe of the pitu-
itary is composed of a homogeneous population of cells,
the melanotrope cells, which express the multifunc-
tional precursor protein proopiomelanocortin (POMC)
(Crine et al., 1978). Post-translational processing of
POMC in melanotrope cells gives rise to the formation of

the melanotropin a-melanocyte-stimulating hormone (a-
MSH) and the opioid peptide b-endorphin (Mains and
Eipper, 1979). In rat, PACAP stimulates cAMP produc-
tion and a-MSH release in cultured melanotrope cells
(Koch and Lutz-Bucher, 1992a). PACAP has also been
found to increase POMC mRNA level in the rat pars
intermedia (René et al., 1996). The stimulatory effect of
PACAP on POMC gene expression and a-MSH secretion
is associated with calcium influx through L-type calcium
channels (Tanaka et al., 1997b). The occurrence of
PACAP mRNA in the neurointermediate lobe of rat
(Tanaka et al., 1997b) and frog (Alexandre et al., 2000),
as well as PAC1-R mRNA in the rat pars intermedia
(Shioda et al., 1997a) strongly suggests that PACAP can
act as a paracrine regulator of melanotrope cell activity.

C. Effects of PACAP on the Thyroid Gland

In the human and porcine thyroid, PACAP has been
shown to stimulate cAMP production and to increase
thyroxine secretion (Chen et al., 1993; Kouki et al.,
1997).

D. Effects of PACAP on the Gonads

The presence of PACAP and its receptors in the testis
and ovary provides evidence that the peptide may oper-
ate as a local regulator of gonadal activity. In the rat
testis, the concentration of PACAP is significantly re-
duced after hypophysectomy and is restored by FSH
administration, indicating that the expression of
PACAP is under the control of pituitary gonadotropins
(Shuto et al., 1995). In vitro, PACAP induces a dose-
dependent stimulation of testosterone secretion from
isolated rat Leydig cells (Romanelli et al., 1997; Rossato
et al., 1997; El-Gehani et al., 1998c) and activates or
inhibits protein synthesis in spermatocytes or sperma-
tids, respectively (West et al., 1995). In Leydig cells,
PACAP activates both adenylyl cyclase and PLC
through an interaction with PAC1-R (Romanelli et al.,
1997). The effect of PACAP on Leydig cells may also be
mediated via a novel receptor subtype coupled to a so-
dium channel through a pertussis toxin-sensitive G pro-
tein (Rossato et al., 1997). The effects of PACAP on
protein synthesis in spermatocytes and spermatids are
both mimicked by dbcAMP (West et al., 1995). In cul-
tured Sertoli cells, PACAP increases cAMP concentra-
tion and stimulates estradiol and inhibin secretion (Hei-
ndel et al., 1992). In the epididymal epithelium, PACAP
stimulates chloride secretion, which is important for
sperm activation and storage (Zhou et al., 1997). The
occurrence of PACAP-immunoreactive material in epi-
didymal tubules indicates that PACAP is locally synthe-
sized and thus may act as a paracrine regulator of sperm
maturation (Zhou et al., 1997). The epithelium-derived
PACAP may also stimulate epididymal spermatozoa
that have lost PACAP synthesis ability (Shioda et al.,
1994) but still possess PACAP binding sites (Shivers et
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al., 1991). In the human cavernous tissue, PACAP dose-
dependently relaxes noradrenalin- and electrically-con-
tracted preparations, suggesting that the peptide may
be involved in the induction and maintenance of penile
erection (Hedlund et al., 1994, 1995). In line with this
finding, a stearic acid VIP conjugate has been shown to
increase the copulatory activity and penile reflex in tes-
tosterone-treated, castrated rats (Gozes and Fridkin,
1992). These data suggest that PACAP and/or VIP deri-
vates could be developed for the treatment of impotence.

In the rat ovary, most granulosa and cumulus cells
from large preovulatory follicles contain both PACAP
mRNA and PACAP-LI (Gräs et al., 1996). Human cho-
rionic gonadotropin (hCG) stimulates the expression of
both PACAP and progesterone receptor mRNAs (Ko et
al., 1999). The peak of expression of progesterone recep-
tor mRNA occurs 3 h after hCG treatment and the peak
of PACAP mRNA only after 6 h, suggesting that proges-
terone receptor activation is required for PACAP gene
expression (Ko et al., 1999). In support of this hypothe-
sis, it has been shown that blockage of the progesterone
receptor with the progesterone receptor antagonist
ZK98299 abrogates the effect of hCG on PACAP gene
expression (Ko et al., 1999). The hCG-evoked stimula-
tion of PACAP gene transcription is abolished by cyclo-
heximide, indicating the requirement of protein synthe-
sis for PACAP mRNA expression (Ko et al., 1999).
Exposure of cultured granulosa cells to PACAP causes a
dose-dependent increase in progesterone production
(Zhong and Kasson, 1994; Apa et al., 1997a,b; Gräs et
al., 1999). Reciprocally, immunoneutralization of endog-
enous PACAP reduces progesterone formation and im-
pairs subsequent luteinization, suggesting that PACAP
plays an important role in LH-induced progesterone pro-
duction during the periovulatory period (Gräs et al.,
1999). Incubation of immature rat preovulatory follicles
with PACAP or VIP induces a dose-dependent inhibition
of follicle apoptosis (Flaws et al., 1995; Lee et al., 1999b).
In luteinized granulosa cells, PACAP appears to be more
potent than LH in stimulating cAMP accumulation
(Richards et al., 1995; Heindel et al., 1996). In the hu-
man female genital tract, PACAP is located in nerve
fibers innervating blood vessels and smooth muscle cells
of the internal cervical os (Graf et al., 1995; Steenstrup
et al., 1995). High concentrations of PACAP are also
found throughout the human uteroplacental unit
(Steenstrup et al., 1996). In vitro, PACAP induces relax-
ation of nonvascular smooth muscle strips from the fal-
lopian tube and myometrium (Steenstrup et al., 1994,
1995) as well as stem villous and intramyometrial ar-
teries (Steenstrup et al., 1996), suggesting that PACAP
regulates the vascular tone in the human female repro-
ductive tract. In placental cells, PACAP enhances cAMP
formation, and hCG and IL-6 production (Desai and
Burrin, 1994).

E. Effects of PACAP on the Adrenal Gland

In adrenal chromaffin cells, PACAP exerts a stimula-
tory action on catecholamine secretion (Watanabe et al.,
1992, 1995; Isobe et al., 1993; Chowdhury et al., 1994;
Guo and Wakade, 1994; Houchi et al., 1994; Perrin et al.,
1995; Neri et al., 1996). PACAP also stimulates the
release of brain natriuretic peptide and enkephalins,
two regulatory peptides that are cosequestered with cat-
echolamines in chromaffin granules (Babinski et al.,
1996; Hahm et al., 1998), and provokes a 15-fold in-
crease in VIP mRNA expression (Lee et al., 1999a). In
vivo studies have shown that PACAP and VIP stimulate
catecholamine release in anesthetized dogs through ac-
tivation of dihydropyridine-sensitive L-type calcium
channels (Gaspo et al., 1997; Geng et al., 1997; Lam-
ouche et al., 1999). The effect of PACAP on catechol-
amine secretion was significantly enhanced during in-
sulin-induced hypoglycemia, suggesting that the
stimulatory action of PACAP on adrenochromaffin cells
may contribute to normalization of glycemia (Yamagu-
chi and Lamouche, 1999). The effect of PACAP on cate-
cholamine secretion is associated with activation of ad-
enylyl cyclase and elevation of cytosolic calcium
concentrations (Isobe et al., 1993, 1994; Houchi et al.,
1994; Perrin et al., 1995; Chamoux et al., 1998). Incuba-
tion of adrenomedullary cells in calcium-free medium or
blockage of voltage-operated calcium channels sup-
presses the PACAP-evoked stimulation of catechol-
amine secretion (Isobe et al., 1993; Houchi et al., 1995;
Przywara et al., 1996; O’Farrell and Marley, 1997), in-
dicating that the effect of PACAP on chromaffin cells is
mediated through calcium influx. Concurrently, PACAP
increases calcium mobilization from ryanodine/caffeine-
sensitive calcium stores (Houchi et al., 1995; Tanaka et
al., 1996, 1998; Shibuya et al., 1999). The effect of
PACAP on catecholamine release is associated with an
increase in the expression of tyrosine hydroxylase, do-
pamine b-hydroxylase, and phenylethanolamine
N-methyltransferase (Houchi et al., 1994; Rius et al.,
1994; Isobe et al., 1996; Marley et al., 1996; Tönshoff et
al., 1997; Hong et al., 1998; Choi et al., 1999; Park et al.,
1999). It has been shown that the stimulatory effect of
PACAP on tyrosine hydroxylase activity is mediated
through activation of the adenylyl cyclase/PKA trans-
duction pathway (Marley et al., 1996). The effect of
PACAP on the multiplication of adrenochromaffin cells
is not yet ascertained: PACAP has been reported to
stimulate proliferation of rat chromaffin cells in primary
culture (Tischler et al., 1995) and to inhibit the mito-
genic effect of nerve growth factor on chromaffin cells
(Frödin et al., 1995; Tischler et al., 1995).

Intravenous administration of PACAP causes eleva-
tion of plasma cortisol levels in dog and calf (Edwards
and Jones, 1994; Kawai et al., 1994). PACAP stimulates
corticosterone and aldosterone secretion from human,
rat, and chicken adrenal slices, but does not affect the
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release of corticosteroids from dispersed fasciculata and
glomerulosa cells (Andreis et al., 1995; Neri et al., 1996;
Mazzochi et al., 1997), suggesting that the response of
adrenocortical cells to PACAP involves the contribution
of another adrenal cell type. Exposure of human adrenal
slices to the b-adrenoreceptor blocker l-alprenolol totally
suppresses the steroidogenic effect of PACAP (Neri et
al., 1996). Similarly, the action of PACAP on dehydro-
epiandrosterone and cortisol secretion by the fetal hu-
man adrenal gland is suppressed by the b-adrenorecep-
tor antagonist propranolol (L. Breault, L. Yon, M.
Montéro, L. Chouinard, V. Contesse, C. Delarue,
A. Fournier, J.G. LeHoux, H. Vaudry, and N. Gallo-
Payet, submitted). Altogether, these observations indi-
cate that, in several mammalian species, the effect of
PACAP on corticosteroid secretion can be ascribed to the
stimulatory action of the peptide on catecholamine se-
cretion. In contrast, PACAP was found to stimulate cor-
ticosteroid release from dispersed bovine and frog adre-
nocortical cells (Yon et al., 1993b, 1994; Bodart et al.,
1997). The fact that PACAP stimulates cAMP and ino-
sitol phosphate formation in bovine glomerulosa cells
(Bodart et al., 1997) and calcium mobilization in indi-
vidual frog adrenocortical cells (Yon et al., 1994) pro-
vides additional evidence of a direct stimulatory effect of
the peptide on steroidogenesis in these two species.

F. Effects of PACAP on the Gastrointestinal Tract

Intravenous injection of PACAP to anesthetized rat
stimulates secretion of saliva from the submandibular
and parotid glands (Mirfendereski et al., 1997). In the
ferret submandibular gland, PACAP and VIP exert a
vasodilatory effect that contributes to the salivary secre-
tory activity (Tobin et al., 1995). In the rat stomach,
PACAP inhibits histamine- and pentagastrin-stimu-
lated gastric acid secretion but has no effect on carba-
chol-induced secretion (Mungan et al., 1992b, 1995; Li et
al., 2000). In contrast, in isolated rabbit parietal cells,
PACAP potentiates the response to histamine and to
carbachol (Healey et al., 1998). In the gastric mucosa,
PACAP has been found to stimulate histamine release
from enterochromaffin cells (Lindstrom et al., 1997; Hå-
kanson et al., 1998; Zeng and Sachs, 1998; Chen et al.,
1999b; Zeng et al., 1999a) through activation of L-type
calcium channels (Zeng et al., 1999b). Because hista-
mine is a potent stimulator of chloride secretion (He-
lander and Keeling, 1993), this observation suggests
that the effect of PACAP on gastric acid production can
be accounted for, at least in part, by an indirect stimu-
lation of enterochromaffin cells. PACAP also stimulates
proliferation of gastric enterochromaffin cells through
activation of the PKA, protein tyrosine kinase, and MAP
kinase pathways (Lauffer et al., 1999). Intracerebroven-
tricular injection of PACAP stimulates gastric acid se-
cretion (Mizuta et al., 1994; Ozawa et al., 1997), suggest-
ing that PACAP may act centrally to regulate gastric
acid release possibly via an indirect mediator such as

peptide tyrosine tyrosine (Guo et al., 1987). In support of
this hypothesis, i.v. injection of PACAP has been shown
to increase plasma peptide tyrosine tyrosine concentra-
tion (Zhang et al., 1993b). On isolated chief cells from
the guinea pig stomach, PACAP increases exocytosis of
zymogen granules that release pepsinogen (Felley et al.,
1992). Intravenous injection of PACAP also enhances
bicarbonate secretion in the duodenum (Takeuchi et al.,
1997). In the distal colon, PACAP acts through cholin-
ergic and noncholinergic neurons to evoke chloride se-
cretions (Kuwahara et al., 1993). One of the interesting
features is the superior potency of PACAP as compared
with other gut neuropeptides in stimulating gastrointes-
tinal exocrine secretions (Lauff et al., 1999).

Besides its effects on the secretory activity of exocrine
and endocrine cells, PACAP induces a concentration-
dependent relaxation of gastric smooth muscles (Katsou-
lis et al., 1996; Robberecht et al., 1998), causing a de-
crease of gastric motility and a delay in stomach
emptying (Ozawa et al., 1999). PACAP also exerts a
relaxant effect on intestinal smooth muscles in rat and
in the Atlantic cod, Gadus morhua (Mungan et al.,
1992a; Schworer et al., 1992; Katsoulis et al., 1993b;
Grider et al., 1994; Ekblad and Sundler, 1997; Olsson
and Holmgren, 2000; Pluja et al., 2000) and thus reduces
the motility of the bowel (Lauff et al., 1999). In contrast,
in the guinea pig small intestine, PACAP stimulates
normal peristalsis and counteracts drug-induced peri-
staltic arrest (Heinemann and Holzer, 1999). The con-
tractile effect of PACAP on the guinea pig ileum is me-
diated through presynaptic stimulation of acetylcholine
and substance P release (Katsoulis et al., 1993a). In the
opossum internal anal sphincter, PACAP exerts a bipha-
sic effect, i.e., an initial contraction followed by a relax-
ation (Rattan and Chakder, 1997; Chakder and Rattan,
1998). The contractile but not the relaxant effect of
PACAP on the anal sphincter is abrogated by a sub-
stance P antagonist, confirming that the PACAP-evoked
contraction is mediated through presynaptic activation
of substance P afferents (Rattan and Chakder, 1997).

G. Effects of PACAP on the Liver

It has long been known that VIP is a potent stimulator
of adenylyl cyclase activity in liver cells (Waelbroeck et
al., 1981). Likewise, in cultured hepatocytes, PACAP
causes a dose-dependent accumulation of cAMP but does
not affect inositol phosphate turnover (El Fahime et al.,
1996). The fact that VIP exerts a mitogenic action on rat
hepatocytes (Kar et al., 1996) strongly suggests that
PACAP could be also involved in the control of liver cell
proliferation. Injection of PACAP to anesthetized dogs
induces a 2-fold increase of plasma glucose concentra-
tion (Sekiguchi et al., 1994). In fact, PACAP is more
potent than VIP in stimulating glucose output from the
perfused rat liver (Yokota et al., 1995). The hyperglyce-
mic action of PACAP observed in vivo can be ascribed to
both a direct action on hepatocytes and an indirect effect
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via glucagon and/or adrenaline release (Sekiguchi et al.,
1994).

H. Effects of PACAP on the Pancreas

In the pancreas, PACAP-immunoreactive fibers inner-
vate both the exocrine acini and the islets of Langer-
hans, as well as the small arteries of the connective
tissue (Table 2; Köves et al., 1993; Tornoe et al., 1997).
Electrical stimulation of the vagus nerve causes the
release of PACAP from the isolated perfused pig pan-
creas, suggesting that PACAP may control exocrine
and/or endocrine pancreatic secretions (Tornoe et al.,
1997).

Intravenous injection of PACAP triggers amylase
(Mungan et al., 1991; Alonso et al., 1994), pancreatic
fluid, bicarbonate, and protein secretions (Naruse et al.,
1992; Alonso et al., 1994; Zabielski et al., 1994; Rodri-
guez-Lopez et al., 1995; Onaga et al., 1996; Wheeler et
al., 1997; Lee et al., 1998). PACAP also induces vasodi-
lation and increases pancreatic blood flow, notably in the
exocrine part of the gland (Carlsson et al., 1996; Ito et
al., 1998). The stimulatory effect of PACAP on juice flow
is inhibited by the antagonist PACAP(6–38) (Tornoe et
al., 1997). Experiments conducted on isolated rat pan-
creatic acini have shown that PACAP exerts a direct
increase on amylase and lipase secretions (Kashimura et
al., 1991; Raufman et al., 1991; Schmidt et al., 1993).
Coadministration of PACAP with cholecystokinin, car-
bachol, or bombesin to dispersed guinea pig acinar cells
causes additive stimulation of amylase secretion (Kim-
ball and Mulholland, 1996). The effect of PACAP is
likely mediated via the adenylyl cyclase pathway but
does not involve PLC activation or calcium mobilization
(Kashimura et al., 1991; Kitagawa et al., 1995; Kimball
and Mulholland, 1996). Besides its direct action on aci-
nar cells, PACAP may also exert an indirect effect on
pancreatic exocrine secretions through modulation of
afferent nerve activity. In particular, PACAP has been
shown to stimulate pancreatic enzyme secretion in
sheep via activation of vagal cholinergic neurons (Onaga
et al., 1997). PACAP also enhances electrically evoked
stimulation of noradrenaline release in the canine pan-
creas (Yamaguchi and Fukushima, 1998), suggesting
that the peptide may control juice flow through presyn-
aptic modulation of the parasympathetic vagus nerve.
Altogether, these data suggest that PACAP has to be
added to the still growing list of secretagogs of the exo-
crine pancreas.

In the endocrine pancreas, PACAP appears to be
much more potent than VIP or other regulatory peptides
in stimulating pancreatic hormone secretion. In vivo
administration of PACAP causes a significant increase
in plasma insulin level in mice (Fridolf et al., 1992;
Filipsson et al., 1998a), calf (Edwards et al., 1997), dog
(Kawai et al., 1992), and humans (Filipsson et al., 1997).
The stimulatory effect of PACAP on insulin release has
also been documented on perfused rat and pig pancreas

(Kawai et al., 1992; Yokota et al., 1993; De Stefanis et
al., 1995; Bertrand et al., 1996; Tornoe et al., 1997) and
on cultured islets cells (Yada et al., 1994, 1997a,b; Fil-
ipsson et al., 1998b, 1999; Davalli et al., 1999). Furthe-
more, pancreatic b-cells express cell-surface ectopepti-
dases capable of degrading PACAP (Hupe-Sodmann et
al., 1997). The amplitude and kinetics of the PACAP-
evoked stimulation of insulin release depends on glucose
concentration in the incubation medium (Yokota et al.,
1993; Bertrand et al., 1996; Edwards et al., 1997).
PACAP induces a biphasic effect on insulin secretion i.e.,
a rapid and transient stimulation (acute phase) followed
by a rebound of the secretory response (plateau phase).
The phosphatidylinositol 3-kinase inhibitor wortmannin
inhibits the plateau phase but not the acute phase of the
PACAP-evoked insulin release (Straub and Sharp,
1996). The effect of PACAP is mediated through PAC1-R
and involves activation of the adenylyl cyclase pathway
(Borboni et al., 1999). Exposure of pancreatic b-cells to
PACAP causes calcium influx through L-type calcium
channels (Yada et al., 1997b) and the stimulatory effect
of PACAP on insulin secretion is abolished by nitrendip-
ine (Komatsu et al., 1996), indicating that activation of
voltage-sensitive L-type calcium channels is involved in
the insulinotropic effect of PACAP. Paradoxically, the
combination of glucose, PACAP, and carbachol stimu-
lates insulin release while being unable to elevate intra-
cellular calcium (Komatsu et al., 1996). Incubation of
isolated rat islets with specific PACAP antisera inhibits
the ability of glucose to stimulate insulin release (Yada
et al., 1997a; Filipsson et al., 1999), indicating that
endogenous PACAP acts as a physiological regulator of
pancreatic b-cell activity. PACAP is also a potent stim-
ulator of glucagon secretion. Intravenous injection of
PACAP increases plasma glucagon concentration in
mice (Fridolf et al., 1992) and humans (Filipsson et al.,
1997). Likewise, in the perfused rat pancreas, PACAP
enhances glucagon secretion (Yokota et al., 1993). The
stimulatory effect of PACAP on insulin and glucagon
release is completely abolished by somatostatin (Yokota
et al., 1993). In contrast, the endozepine octadecaneu-
ropeptide (a potent inhibitor of insulin release; Tonon et
al., 1997) has no effect on the PACAP-evoked insulin
secretion (De Stefanis et al., 1995).

I. Effects of PACAP on the Respiratory System

The occurrence of PACAP and PACAP receptors has
been reported at different levels of the airways (Tables 2
and 7). In rodents, PACAP causes relaxation of tracheal
smooth muscles (Araki and Takagi, 1992; Conroy et al.,
1995; Foda et al., 1995; Hiramatsu et al., 1995; Yoshi-
hara et al., 1997) and bronchodilation (Linden et al.,
1995, 1997, 1999; Kinhult et al., 2000). In guinea pig,
rabbit, and primate trachea precontracted with acetyl-
choline or potassium, micromolar concentrations of
PACAP cause smooth muscle relaxation (Kanemura et
al., 1993; Bhogal et al., 1994; Okazawa et al., 1998). It
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has also been reported that PACAP suppresses the in-
crease in airway hyper-responsiveness induced by ozone
exposure (Aizawa et al., 1999). The relaxant effect of
PACAP on the trachea is mediated through activation of
the cAMP/PKA (Araki and Takagi, 1992; Kanemura et
al., 1993; Foda et al., 1995) and nitric oxide (NO)/cyclic
guanosine monophosphate transduction pathways (Sao-
tome et al., 1998). In addition to its potent bronchodila-
tory activity, PACAP is a potent stimulator of airway
mucus secretions (Wagner et al., 1998; Liu et al., 1999).
Owing to the bronchorelaxant properties of PACAP, syn-
thetic analogs are currently under evaluation for their
potential application in the treatment of asthma (Bolin
et al., 1995; Meyer et al., 1996; Saguchi et al., 1997).

J. Effects of PACAP on the Cardiovascular System

The walls of blood vessels are richly innervated by
PACAP-containing fibers (Table 2; Köves et al., 1990;
Cardell et al., 1991) and a high density of PACAP bind-
ing sites is present in arteries (Table 6; Amenta et al.,
1991; Nandha et al., 1991; Huang et al., 1993). PACAP,
in very much the same way as VIP, is a highly potent
vasorelaxant peptide (Hirata et al., 1985; Ross-Ascuitto
et al., 1993; Tong et al., 1993; Ascuitto et al., 1996).
Intracerebral injection of low doses of PACAP (0.1–1
nmol) produces a rapid increase in cerebral blood flow
(Uddman et al., 1993; Jansen-Olesen et al., 1994; Seki et
al., 1995a). Intravenous infusion of very low doses of
PACAP (0.01–10 pmol/min) induces a concentration-de-
pendent increase in blood flow and a concomitant de-
crease in blood pressure (Nandha et al., 1991; Ishizuka
et al., 1992; Minkes et al., 1992a; Warren et al., 1992a,b;
Naruse et al., 1993; Santiago and Kadowitz, 1993; Su-
zuki et al., 1994b; Mirfendereski et al., 1997; Whalen et
al., 1999a,b,c). The most prominent effects induced by
i.v. administration of PACAP are observed in the parotid
and submandibular glands, the eyelids, and the nictitat-
ing membrane (Nilsson, 1994). The vasodilatory activity
of PACAP also has been documented in various organs
including the brain (Tong et al., 1993; Anzai et al., 1995),
the eye (Nilsson, 1994; Elsas and White, 1997; Dorner et
al., 1998), the pulmonary vascular bed (Minkes et al.,
1992b; Cheng et al., 1993; Foda et al., 1995), the mes-
entery (Wilson and Warren, 1993), the pancreas (Ber-
trand et al., 1996; Ito et al., 1998), the testis (Lissbrant
et al., 1999), the ovary (Steenstrup et al., 1994; Yao et
al., 1996), the kidney (Gardiner et al., 1994), and the
skin (Wallengren, 1997). In dog, administration of high
doses of PACAP (3 nmol) induces a biphasic effect, i.e., a
transient hypotensive response followed by a sustained
hypertension (Ishizuka et al., 1992), suggesting that the
action of PACAP on the vascular tone can be ascribed
both to a direct vasorelaxant effect and an indirect hy-
pertensive action mediated through the release of cat-
echolamines. In support of this hypothesis, it has been
shown that the increase in blood pressure induced by i.v.
injection of PACAP in cat is abolished by the a1- and a2

-adrenoreceptor antagonist phentolamine and by adre-
nalectomy (Minkes et al., 1992a). The mechanism of
action of PACAP on blood vessel contractility is not fully
understood. The effects of PACAP on blood pressure can
be ascribed, at least in part, to its relaxant activity on
arterial smooth muscle cells (Huang et al., 1993; Naruse
et al., 1993; Steenstrup et al., 1996; Bruch et al., 1997).
PACAP increases cAMP formation in the isolated rabbit
ovarian artery (Yao et al., 1996), the rat tail vein (Ab-
sood et al., 1992), and cerebral microvessels (Kobayashi
et al., 1994; Wilderman and Armstead, 1997). The inhib-
itory effect of cAMP on smooth muscle cell contraction is
well documented (Steer, 1976; Korenman and Krall,
1977; Farah, 1983). In particular, hypertension is a com-
mon manifestation in patients with cortisol excess, and
glucocorticoids are known to inhibit cAMP production
(Ito et al., 1994). These observations suggest that
PACAP, which stimulates cAMP production in blood
vessels, may have potential therapeutic value for the
treatment of hypertension. PACAP modulates L-type
calcium channels in vascular smooth muscle cells
through the activation of both PKA and protein kinase C
(PKC) (Chik et al., 1996). The action of PACAP on arte-
riol smooth muscle cell relaxation requires the activa-
tion of ATP- and calcium-dependent potassium channels
(Bruch et al., 1997). PACAP also stimulates the release
of the prostaglandin PGF2a but does not affect other
cyclooxygenase metabolites (Anzai et al., 1995). The pos-
sible involvement of the endothelium in the vasodilatory
activity of PACAP is still disputed: two reports indicate
that the vasorelaxant effect of PACAP on the aorta and
coronary arteries is endothelium-independent (Warren
et al., 1991; Kastner et al., 1995) whereas another study
reveals that removal of the vascular endothelium abol-
ishes the dilatory response induced by PACAP in pul-
monary arteries (Cardell et al., 1997). Some of the effects
of PACAP on the vascular bed appear to be mediated
through the release of vasculotropic factors. In particu-
lar, PACAP has been found to stimulate the production
of vascular endothelial growth factor, which plays an
important role in angiogenesis and vascular permeabil-
ity (Gloddek et al., 1999).

In the heart, PACAP produces positive inotropic, chro-
notropic, and dromotropic effects, making it a car-
diotonic candidate for treatment of heart failure. For
instance, i.v. injection of PACAP in cat and sheep pro-
vokes an increase in heart rate and enhances the con-
tractile ventricular force (Minkes et al., 1992a; Sawang-
jaroen et al., 1992; Sawangjaroen and Curlewis, 1994).
In dog, PACAP causes transient positive followed by
negative chronotropic and inotropic responses (Hirose et
al., 1997b, 1998). The positive inotropic and chronotropic
effects of PACAP are attributable to direct stimulation
of cardiac myocytes (Suzuki et al., 1993; Runcie et al.,
1995; Hirose et al., 1997a) whereas the negative chrono-
tropic response can be ascribed to presynaptic regulation
of acetycholine release from intracardiac parasympa-
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thetic nerves (Hirose et al., 1997c). In vitro studies on
the isolated guinea pig heart have confirmed that the
negative chronotropic effect of PACAP can be accounted
for by an increase in acetylcholine release from para-
sympathetic neurons (Seebeck et al., 1996). In rat, the
PACAP-induced tachycardia is abolished by the b-adre-
noreceptor antagonist propranolol but is not affected by
the ganglion blocker chlorisondamine, indicating that
PACAP directly stimulates norepinephrine release from
cardiac sympathetic nerve terminals (Whalen et al.,
1999a).

K. Effects of PACAP on Immune Cells

On human monocytes, PACAP induces a slight in-
crease in cAMP formation that gradually vanishes dur-
ing differentiation into macrophages (Chedeville et al.,
1993). On cultured mast cells, PACAP stimulates hista-
mine secretion (Mori et al., 1994; Odum et al., 1998;
Schmidt-Choudhury et al., 1999a,b) and serotonin re-
lease (Seebeck et al., 1998), suggesting that PACAP
could be involved in the regulation of the inflammatory
process. In mitogen-stimulated murine splenocytes,
PACAP causes a dose-dependent inhibition of cell pro-
liferation induced by concanavalin A (Tatsuno et al.,
1991b). PACAP decreases chemotaxis of thymocytes and
splenic lymphocytes through activation of the PKA path-
way (Delgado et al., 1995; Garrido et al., 1996). In
CD41CD81 thymocytes, PACAP prevents glucocorti-
coid-induced apoptosis (Delgado et al., 1996b) by inhib-
iting Fas ligand expression (Delgado and Ganea, 2000),
suggesting a possible implication in intrathymic T-cell
maturation. Several studies indicate that PACAP mod-
ulates the production of cytokines by immune cells. In
murine spleen cells and thymocytes, PACAP inhibits
IL-10 production via both cAMP-dependent and cAMP-
independent transduction pathways (Martinez et al.,
1996; Wang et al., 1999). In unstimulated macrophages,
PACAP and its agonist maxadilan inhibit the release of
tumor necrosis factor-a (TNF-a) and increase IL-6 pro-
duction through activation of PKA and PKC (Delgado et
al., 1998, 1999c,g; Martinez et al., 1998a; Soares et al.,
1998). In contrast, PACAP inhibits the release of both
IL-6 and IL-12 as well as TNF-a from lipopolysaccha-
ride-stimulated macrophages; this suggests that PACAP
could act as a protective agent that regulates the exces-
sive release of proinflammatory cytokines (Martinez et
al., 1998a,b; Delgado et al., 1999a,c,e). Concurrently,
PACAP enhances the production of the anti-inflamma-
tory cytokine IL-10 by lipopolysaccharide-activated mac-
rophages (Delgado et al., 1999f). Thus it appears that
the anti-inflammatory activity of PACAP can be ac-
counted for both by an inhibition of the proinflammatory
cytokines IL-6 and TNF-a, and by a stimulation of the
anti-inflammatory cytokine IL-10. The effect of PACAP
on macrophages involves the up-regulation of B7.2 but
not B7.1 gene expression (Delgado et al., 1999b,h). In
addition, PACAP inhibits NO production from activated

macrophages in a dose- and time-dependent manner
(Delgado et al., 1999d). The release of NO is a major
mechanism through which macrophages exert their cy-
totoxic effect against pathogens, and is also responsible
for acute inflammatory diseases (Laskin and Pendino,
1995). Therefore, the inhibition of NO synthesis induced
by PACAP could play a physiological role in the modu-
lation of the inflammatory response. Inflammatory
stress due to infection by various microorganisms is
known to activate inflammatory regulators through the
hypothalamo-pituitary-adrenocortical axis (Sternberg,
1995; Buckingham et al., 1996). Intraperitoneal admin-
istration of lipopolysaccharide stimulates PACAP-LI in
the PVN, suggesting that PACAP may function as a
hypothalamo-pituitary-releasing factor during acute in-
flammation (Hannibal et al., 1999).

L. Effects of PACAP on Bones

Immunoreactive PACAP has been detected in carti-
lage canals from newborn pigs (Strange-Vognsen et al.,
1997), and VPAC1 receptors are expressed in human
osteoblasts (Togari et al., 1997). Consistent with these
observations, PACAP has been found to increase cAMP
formation in mouse calvarial bones (Lerner et al., 1994)
and to inhibit bone resorption by rabbit osteoblasts
(Winding et al., 1997).

M. Effects of PACAP on Tumor Cells

As already noticed, PACAP and its receptors are
highly expressed in a number of tumor cell lines (see
section II, G and III, G). Consistent with this observa-
tion, it has been found that PACAP exerts either stim-
ulatory or inhibitory effects on tumor cells. In the small
cell lung tumor cell line NCI-H345, PACAP stimulates
cell proliferation through the activation of type II bind-
ing sites (Moody et al., 1993, 1997). In rat pancreatic
carcinoma AR4–2J cells, PACAP strongly increases c-fos
and c-jun gene expression (Schäfer et al., 1996) and
stimulates cell proliferation (Buscail et al., 1992;
Douziech et al., 1998). The effect of PACAP on AR4–2J
cells is mediated through activation of tyrosine kinase
and phospholipase D (Morisset et al., 1995). PACAP also
increases c-fos expression in lung cancer cells (Draoui et
al., 1996). The fact that the PAC1-R antagonist
PACAP(6–38) reduces tumor growth in nude mice trans-
planted with lung tumor cell (Zia et al., 1995) and breast
cancer cell xenografts (Leyton et al., 1999) indicates that
PACAP exerts a tonic stimulatory effect on cell prolifer-
ation. Likewise, PACAP transiently increases c-fos gene
expression in prostate cancer cells in vitro, and
PACAP(6–38) markedly inhibits tumor growth in mice
bearing PC-3 xenografts (Leyton et al., 1998). In con-
trast, PACAP slackens cell proliferation of glioblastoma
and colonic adenocarcinoma cells (Vertongen et al.,
1996; Lelievre et al., 1998a). On neuroblastoma cell
lines, PACAP exerts a biphasic effect, with stimulation
of proliferation occurring at subnanomolar doses and
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differentiation at higher concentrations (Deutsch et al.,
1993; Hoshino et al., 1993; Lilling et al., 1994; Lelievre
et al., 1996, 1998b). The stimulatory action of PACAP on
cell multiplication is mediated through activation of the
MAP kinase cascade, independently of the PKA and
PKC pathways, whereas the inhibitory action of PACAP
can be accounted for by activation of PKA (Frödin et al.,
1994).

In pheochromocytoma PC12 cells, PACAP stimulates
tyrosine hydroxylase gene expression (Corbitt et al.,
1998) and promotes neurite outgrowth (Deutsch and
Sun, 1992; Lazarovici et al., 1998). In PC12 cells,
PACAP, acting through type I PACAP receptors, stimu-
lates both the PKA- and PKC-signaling cascades (Wa-
tanabe et al., 1990; Deutsch and Sun, 1992; Cavallaro et
al., 1995; Kozawa et al., 1995). As a matter of fact, the
action of PACAP on the differentiation of PC12 cells can
be ascribed to its stimulatory effect on the PKA (Her-
nandez et al., 1995) and/or the PKC transduction path-
ways (Schadlow et al., 1992; Colbert et al., 1994). The
extracellular ERK inhibitor PD98059 abrogates both
PACAP-induced stimulation of ERK and neurite out-
growth (Frödin et al., 1994; Barrie et al., 1997), suggest-
ing that activation of the MAP kinase cascade is re-
quired for initiating the differentiation of PC12 cells into
sympathetic-like neurons (Traverse et al., 1992; Tanaka
et al., 1997a). PACAP prevents apoptosis of PC12 cells
provoked by serum depletion, through stimulation of the
PKA pathway and subsequent activation of the MAP
kinase cascade (Tanaka et al., 1997a). PACAP also pre-
vents ceramide-induced apoptosis of PC12 cells by af-
fecting signaling events downstream of the c-Jun N-
terminal kinase (Hartfield et al., 1998). In addition,
PACAP enhances chromogranin A gene expression
(Taupenot et al., 1998), activates the transcription of the
transfected NPY and proenkephalin A genes (Colbert et
al., 1994; Monnier and Loeffler, 1998), and regulates
genes bearing a CRE or TRE motif via an increase in
cAMP and inositol phosphate formation (Schadlow et al.,
1992; Monnier and Loeffler, 1998; Yukimasa et al.,
1999). The chromogranin A trans-activation response
induced by PACAP is subject to desensitization when
the cells are pre-exposed to PACAP (Taupenot et al.,
1999).

In tumor pituitary cells, PACAP modulates hormone
secretion and/or cell proliferation. For instance, in the
gonadotrope aT3–1 cell line, PACAP stimulates the cat-
alytic and regulatory subunits of PKA (Garrel et al.,
1997) and inhibits transforming growth factor-b-in-
duced apoptosis in the human pituitary adenoma cell
line HP75 (Oka et al., 1999). In the lactotrope 235–1 cell
line, PACAP stimulates PRL release through activation
of the PLC pathway and exerts mitogenic effects (Ham-
mond et al., 1996). In the lactotrope/somatotrope cell
lines GH3, nanomolar concentrations of PACAP stimu-
late GH and PRL release through activation of type II
receptors and recruitment of voltage-gated sodium chan-

nels (Propato-Mussafiri et al., 1992; Murakami et al.,
1995). In the picomolar range, PACAP increases PRL
mRNA level independently of the cAMP/PKA pathway
(Coleman and Bancroft, 1993; Murakami et al., 1995;
Koshimura et al., 1997). In the corticotrope AtT20 cell
line, PACAP mimics the effect of CRF, i.e., it stimulates
adenylyl cyclase activity and triggers both POMC gene
transcription and ACTH release (Koch and Lutz-Bucher,
1992a, 1995; Boutillier et al., 1994; Braas et al., 1994;
Aoki et al., 1997). In the FS cell line TtT/GF, PACAP
increases IL-6 secretion (Matsumoto et al., 1993).
PACAP has also been found to activate human pituitary
adenomas. In actively secreting adenoma, PACAP ex-
hibits a modest stimulatory effect on ACTH, GH, or
gonadotropin release (Desai et al., 1994). In nonfunc-
tional pituitary tumors, PACAP stimulates cAMP for-
mation and induces calcium influx through L-type cal-
cium channels (Lania et al., 1995). Taken together, these
observations suggest that PACAP/VIP receptors may be
involved in the regulation of tumor cells. Development of
selective PACAP agonists or antagonists should give rise
to powerful pharmacological tools for the treatment of
cancers (Jiang et al., 1997; Fruhwald et al., 1999).

V. Conclusion and Perspectives

Twelve years after its initial characterization, PACAP
certainly appears as one of the most fascinating neu-
ropeptides ever identified. PACAP belongs to the largest
family of regulatory peptides, which encompasses sev-
eral other prominent members including secretin, glu-
cagon, GRF, and VIP. The structural and functional
relationships among these paralogous peptides, as well
as their receptors, provide a unique model for investi-
gating the evolutionary processes leading to diversifica-
tion of a multigene family. The primary structure of
PACAP has been extremely well conserved from the sea
squirt (a protochordate) to humans, indicating that this
peptide must be involved in vital functions throughout
the animal kingdom. As a matter of fact, PACAP has
been implicated in a broad range of biological processes
including reproduction, development, growth, cardiovas-
cular, respiratory, and digestive functions, immune re-
sponses, and circadian rhythms. Whether these pharma-
cological responses to PACAP actually reflect
physiological activities of the peptide remains a matter
of speculation. To answer this fundamental question,
the development of potent and selective PACAP antag-
onists, as well as the production of PACAP- and PACAP
receptor-knockout animals, are obviously required.
There is now clear evidence that PACAP exerts trophic
effects on multiple types of cells but many questions
remain unanswered regarding the molecular mecha-
nisms involved in the action of PACAP on proliferation,
migration, differentiation, and apoptosis. In particular,
investigation of the effect of PACAP on key regulatory
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proteins of the cell cycle and components of the apoptotic
pathways must be urgently investigated.

The beneficial effects of PACAP or PACAP antago-
nists in various pathological conditions such as isch-
emia, cancer, heart failure, and asthma will undoubtly
motivate the development of new ligands, most prefera-
bly peptidomimetics, which could potentially be used as
neuroprotective, antiproliferative, antihypertensive, or
bronchodilatory drugs. The occurrence of multiple recep-
tor subtypes including splice variants, which possess
differential affinities for various ligands and exhibit spe-
cific tissue expression, generates hopes for the develop-
ment of therapeutic agents acting on selected targets.
Better characterization of the three-dimensional confor-
mation of PACAP and analysis of the dynamic interac-
tions of the peptide with its receptors would be instru-
mental for the design of such compounds. Alternatively,
owing to the potential therapeutic value of PACAP re-
ceptor ligands, high-output screening of chemical librar-
ies using cells transfected with the different PACAP
receptors also should be a promising avenue for the
development of novel drugs.
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Köves K, Görcs TG and Arimura A (1994b) Colocalization of PACAP, but not VIP,
with oxytocin in the hypothalamic magnocellular neurons of colchicine treated and
pituitary stalk sectioned rats. Endocrine 2:1169–1175.

Köves K, Kantor O, Scammell JG and Arimura A (1998) PACAP colocalizes with
luteinizing and follicle-stimulating hormone immunoreactivities in the anterior
lobe of the pituitary gland. Peptides 19:1069–1072.

Kozawa O, Suzuki A and Tokuda H (1995) Pituitary adenylate cyclase-activating
polypeptide autoregulates cAMP production due to activation of protein kinase C
in PC12 pheochromocytoma cells. Horm Metab Res 27:110–112.

Kozicz T, Vigh S and Arimura A (1997) Axon terminals containing PACAP- and
VIP-immunoreactivity form synapses with CRF-immunoreactive neurons in the
dorsolateral division of the bed nucleus of the stria terminalis in the rat. Brain Res
767:109–119.

Krebs J (1998) The role of calcium in apoptosis. Biometals 11:375–382.

Krempels K, Usdin TB, Harta G and Mezey E (1995) PACAP acts through VIP type
2 receptors in the rat testis. Neuropeptides 29:315–320.

Kuenzel WJ, McCune SK, Talbot RT, Sharp PJ and Hill JM (1997) Sites of gene
expression for vasoactive intestinal polypeptide throughout the brain of the chick
(Gallus domesticus). J Comp Neurol 381:101–118.

Kusakabe T, Matsuda H, Gono Y, Kawakami T, Kurihara K, Tsukuda M and
Takenaka T (1998) Distribution of VIP receptors in the human submandibular
gland: An immunohistochemical study. Histol Histopathol 13:373–378.

Kuwahara A, Kuwahara Y, Mochizuki T and Yanaihara N (1993) Action of pituitary
adenylate cyclase-activating polypeptide on ion transport in guinea pig distal
colon. Am J Physiol 264:G433–G441.

Lam HC, Takahashi K, Ghatei MA, Kanze SM, Polak JM and Bloom SR (1990)
Binding sites of a novel neuropeptide pituitary-adenylate-cyclase-activating
polypeptide in the rat brain and lung. Eur J Biochem 193:725–729.

Lamouche S, Martineau D and Yamaguchi N (1999) Modulation of adrenal catechol-
amine release by PACAP in vivo. Am J Physiol 276:R162–R170.

Lamperti ED, Rosen KM and Villa-Komaroff L (1991) Characterization of the gene
and messages for vasoactive intestinal polypeptide (VIP) in rat and mouse. Brain
Res Mol Brain Res 9:217–231.

Lania A, Gil-del-Alamo P, Saccomanno K, Persani L, Faglia G and Spada A (1995)
Mechanism of action of pituitary adenylate cyclase-activating polypeptide
(PACAP) in human nonfunctioning pituitary tumors. J Neuroendocrinol 7:695–
702.

Laskin DL and Pendino KJ (1995) Macrophages and inflammatory mediators in
tissue injury. Annu Rev Pharmacol Toxicol 35:655–677.

Lauff JM, Modlin IM and Tang LH (1999) Biological relevance of pituitary adenylate
cyclase-activating polypeptide (PACAP) in the gastrointestinal tract. Regul Pept
84:1–12.

Lauffer JM, Modlin IM, Hinoue T, Kidd M, Zhang T, Schmid SW and Tang LH (1999)
Pituitary adenylate cyclase-activating polypeptide modulates gastric enterochro-
maffin-like cell proliferation in rats. Gastroenterology 116:623–635.

Lazarovici P, Jiang H and Fink D Jr (1998) The 38-amino acid form of pituitary
adenylate cyclase-activating polypeptide induces neurite outgrowth in PC12 cells
that is dependent on protein kinase C and extracellular signal-regulated kinase
but not on protein kinase A, nerve growth factor receptor tyrosine kinase, p21(ras)
G protein, and pp60(c-src) cytoplasmic tyrosine kinase. Mol Pharmacol 54:547–
558.

Lee HW, Hahm SH, Hsu CM and Eiden LE (1999a) Pituitary adenylate cyclase-
activating polypeptide regulation of vasoactive intestinal polypeptide transcrip-
tion requires Ca21 influx and activation of the serine/threonine phosphatase
calcineurin. J Neurochem 73:1769–1772.

Lee J, Park HJ, Choi HS, Kwon HB, Arimura A, Lee BJ, Choi WS and Chun SY
(1999b) Gonadotropin stimulation of pituitary adenylate cyclase-activating
polypeptide (PACAP) messenger ribonucleic acid in the rat ovary and the role of
PACAP as a follicle survival factor. Endocrinology 140:818–826.

Lee ST, Lee KY, Li P, Coy D, Chang TM and Chey WY (1998) Pituitary adenylate
cyclase-activating peptide stimulates rat pancreatic secretion via secretin and
cholecystokinin releases. Gastroentrology 114:1054–1060.

Legradi G, Hannibal J and Lechan RM (1998) Pituitary adenylate cyclase-activating
polypeptide-nerve terminals densely innervate corticotropin-releasing hormone-
neurons in the hypothalamic paraventricular nucleus of the rat. Neurosci Lett
246:145–148.

Legradi G, Shioda S and Arimura A (1994) Pituitary adenylate cyclase-activating
polypeptide-like immunoreactivity in autonomic regulatory areas of the rat me-
dulla oblongata. Neurosci Lett 176:193–196.

Leibowitz SF (1988) Hypothalamic paraventricular nucleus: Interaction between
alpha 2-noradrenergic system and circulating hormones and nutrients in relation
to energy balance. Neurosci Biobehav Rev 12:101–109.

Lelievre V, Becq-Giraudon L, Meunier AC and Muller JM (1996) Switches in the
expression and function of PACAP and VIP receptors during phenotypic intercon-
version in human neuroblastoma cells. Neuropeptides 30:313–322.

Lelievre V, Meunier AC, Caigneaux E, Falcon J and Muller JM (1998a) Differential
expression and function of PACAP and VIP receptors in four human colonic
adenocarcinoma cell lines. Cell Signal 10:13–26.

Lelievre V, Pineau N, Du J, Wen CH, Nguyen T, Janet T, Muller JM and Waschek
JA (1998b) Differential effects of peptide histidine isoleucine (PHI) and related
peptides on stimulation and suppression of neuroblastoma cell proliferation. A
novel VIP-independent action of PHI via MAP kinase. J Biol Chem 273:19685–
19690.

Leonhardt S, Jarry H, Kreipe A, Werstler K and Wuttke W (1992) Pituitary adenyl-
ate cyclase-activating polypeptide (PACAP) stimulates pituitary hormone release
in male rats. Neuroendocrinol Lett 14:319–328.

Lerner EA, Ribeiro JM, Nelson RJ and Lerner MR (1991) Isolation of maxadilan, a
potent vasodilatory peptide from the salivary glands of the sand fly Lutzomyia
longipalpis. J Biol Chem 266:11234–11236.

Lerner UH, Lundberg P, Ransjo M, Persson P and Håkanson R (1994) Helodermin,
helospectin, and PACAP stimulate cyclic AMP formation in intact bone, isolated
osteoblasts, and osteoblastic cell lines. Calcif Tissue Int 54:284–289.

Leung PS, Wong TP, Wong PY and Chan HC (1998) Localization and distribution of
pituitary adenylate cyclase-activating polypeptide in the rat epididymis. Cell Biol
Int 22:193–198.

Leyton J, Coelho T, Coy DH, Jakowlew S, Birrer MJ and Moody TW (1998)
PACAP(6–38) inhibits the growth of prostate cancer cells. Cancer Lett 125:131–
139.

Leyton J, Gozas Y, Pisegna J, Coy D, Purdom S, Casibang M, Zia F and Moody TW
(1999) PACAP(6–38) is a PACAP antagonist for breast cancer cells. Breast Cancer
Res Treat 56:177–186.

Li M, Nakayama K, Shuto Y, Somogyvari-Vigh A and Arimura A (1998) Testis-
specific prohormone convertase PC4 processes the precursor of pituitary adenylate
cyclase-activating polypeptide (PACAP). Peptides 19:259–268.

Li M, Shioda S, Somogyvari-Vigh A, Onda H and Arimura A (1997) Specific antibody

PITUITARY ADENYLATE CYCLASE-ACTIVATING POLYPEPTIDE 315

 by guest on June 15, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


recognition of rat pituitary adenylate cyclase-activating polypeptide receptors.
Endocrine 7:183–190.

Li M, Shuto Y, Somogyvari-Vigh A and Arimura A (1999) Prohormone convertases 1
and 2 process proPACAP and generate matured, bioactive PACAP38 and
PACAP27 in transfected rat pituitary GH4C1 Cells. Neuroendocrinology 69:217–
226.

Li P, Chang T, Coy D and Chey WY (2000) Inhibition of gastric acid secretion in rat
stomach by PACAP is mediated by secretin, somatostatin and PGE(2). Am J
Physiol Gastrointest Liver Physiol 278:G121–G127.

Li S, Grinevich V, Fournier A and Pelletier G (1996) Effects of pituitary adenylate
cyclase-activating polypeptide (PACAP) on gonadotropin-releasing hormone and
somatostatin gene expression in the rat brain. Mol Brain Res 41:157–162.

Lilling G, Wollman Y, Goldstein MN, Rubinraut S, Fridkin M, Brenneman DE and
Gozes I (1994) Inhibition of human neuroblastoma growth by a specific VIP
antagonist. J Mol Neurosci 5:231–239.

Lin C, Lin SC, Chang CP and Rosenfeld MG (1992) Pit-1-dependent expression of the
receptor for growth hormone-releasing factor mediates pituitary cell growth. Na-
ture (Lond) 360:765–768.

Lindén A, Cardell LO, Yoshihara S and Nadel JA (1999) Bronchodilation by pituitary
adenylate cyclase-activating peptide and related peptides. Eur Respir J 14:443–
451.

Lindén A, Yoshihara S, Cardell LO, Kaneko T, Stjärne P and Nadel JA (1997)
Functional type II VIP-PACAP receptors in human airway epithelial-like cells.
Peptides 18:843–846.

Lindén A, Yoshihara S, Chan B and Nadel JA (1995) Inhibition of bronchoconstric-
tion by pituitary adenylate cyclase-activating polypeptide (PACAP 1–27) in guin-
ea-pigs in vivo. Br J Pharmacol 115:913–916.
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